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Acronyms

Al Aluminum

As  Arsenic

Ca Calcium

Cd Cadmium

Co Cobalt

Cr  Chromium

Cu  Copper

Fe Iron

Hg Mercury

Mn Manganese

Ni  Nickel

Pb  Lead

Se  Selenium

\" Vanadium

Zn  Zinc
Highlights

* Most of the studies of metals in penguins have been carried out in

Antarctic and subantarctic islands. However, there is a lack of data from
lower latitudes where other important penguin species inhabit.

The levels of metals are reported mainly in feathers and excreta. Further
research in other biological matrices such as internal organs and blood is
required.

Further research in the issue of biological effects caused by metals is
needed.

Little is known about the interaction among the metals which could
activate certain mechanisms of detoxification of the body of the penguins.

1 Introduction

Trace metal toxicity is one of the major stressors leading to hazardous effects on
biota (Bargagli 2001; Zhang and Ma 2011). In aquatic environments, trace element
contamination is a great concern, due to the implications these chemicals may have
on both wildlife and human health (Lavoie et al. 2013; Prashanth et al. 2016). These
elements enter the water through natural erosion, geochemical cycles, industrial
processes, and agricultural practices (Burger and Gochfeld 2000a). In birds, some
metals can produce severe adverse effects such as difficulty in flying, walking and
standing, paralysis, and an increase in mortality (Newman 2015). In order to
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monitor the occurrence of environmental pollutants in marine ecosystems, the use
of aquatic birds has greatly increased, because they can accumulate trace elements
in diverse tissues, such as eggs, feathers, or liver, thus can be used to indirectly
evaluate in a proper way the toxicological status of the marine ecosystem under
study (Savinov et al. 2003). Moreover, seabird diet and feeding ecology can differ
in response to climate change, thus affecting exposure to metals over time (Braune
et al. 2014). Evidence indicates that the concentrations of certain pollutants in
seabirds have a lower variation coefficient than that observed in fishes or marine
mammals, so that the analysis of a relatively low number of samples of birds is
similar to that obtained by analyzing a significantly higher number in other groups
of animals (Pérez-Lopez et al. 2005). Birds tend to be more sensitive to environ-
mental contaminants than other vertebrates (Zhang and Ma 2011), thus ecotoxico-
logical studies on seabirds have proliferated in recent years (Casini et al. 2001;
Barbieri et al. 2010; Barbosa et al. 2013; Celis et al. 2014; Kehrig et al. 2015).

The study of trace elements in penguins is valuable, because they are animals
that exclusively inhabit the Southern Hemisphere and represent about 90% of the
bird biomass of the Southern Ocean (Williams 1990). Penguins are present in
different systems in the Antarctic, subantarctic islands of the Pacific, Atlantic,
and Indian oceans, as well as on the coasts of Australia, South Africa, South
America, and the Galapagos (Garcia and Boersma 2013). Penguins are useful
indicators of the degree of contamination by trace elements in the environment,
because they are highly specialized animals that swim and dive in search for food,
are widely distributed, and are organisms usually found at the top of the trophic web
(De Moreno et al. 1997; Boersma 2008; Fig. 1). Additionally, penguins are
extremely interesting as bioindicators because of their intense molting process
(Carravieri et al. 2014), and because they can be finicky eaters with a restricted
diet (Lescroél et al. 2004; Jerez et al. 2011).

The different penguin species (order Sphenisciformes, family Spheniscidae) can
be classified in the genera Aptenodytes, Eudyptes, Eudyptula, Megadyptes,
Pygoscelis, and Spheniscus. These species have in common the fact of presenting
serious risks of survival in the future, because about two thirds of penguin species
are on the Red List of Threatened Species of the International Union for Conser-
vation of Nature (UICN 2016). Contamination, climate change, fishing, alterations
of ecosystems, diseases, and even tourism are their major threats (Garcia and
Boersma 2013). The lack of knowledge about the effects of trace elements in
seabirds is a main threat to their population sustainability (Sanchez-Hernandez
2000).

The study of the biological effects of toxic trace elements ingested by penguins
is of great relevance because it may contribute knowledge of possible consequences
in nature (Nordberg and Nordberg 2016). Moreover, evidence has revealed that
some trace elements such as As, Cd, Hg, Mn, Pb, and Zn can affect the endocrine
system of animals and humans, producing alterations in physiological functions
(Tavicoli et al. 2009). Given the wide distribution of penguins, data concerning trace
element concentrations in different biotic matrices of penguins are summarized
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Use of organisms to monitor
contamination and its possible
effects on biota.

Trace element effects

oindicator

| Seabirds may serve as
sentinel species to
assess the level of
contamination of a
food web in a given |
geographical region |
and time period.

Fig. 1 Sources of trace elements in the environment, bioaccumulation, biomagnification, and
effects on penguins. According to Newman (2015), bioaccumulation is the net accumulation of a
contaminant on an organism from all sources including water, air, and solid phases (food, soil,
sediment, or fine particles suspended in air or water) in the environment. Biomonitoring is the use
of organisms to monitor contamination and its possible effects on biota (at individual level,
population, or communities) and ecosystems

here to be used as a first background database for contamination detection in marine
ecosystems.

2 Materials and Methods

In order to identify the interaction of penguin species and trace elements, a systematic
study of the existing literature on the concentrations of trace elements in different
biotic matrices studied was conducted. These biological matrices correspond to
guano, feathers, eggs, blood, stomach contents, and internal organs. By using data-
bases such as Direct, Springer, Scopus, and Web of Science, different keywords were
used. Among them, “trace element,” “heavy metal,” “trace metals,” “mercury,”
“aluminum,” “arsenic,” “cadmium,” “lead,” “zinc,” “copper,” “pollution,” “persis-
tent pollutants,” “monitoring,” “biomonitoring,” “penguin,” “seabirds,” “eggs,”
“blood,” “guano,” “droppings,” “feathers,” “tissues,” “organs,” and “Antarctic” can
be mentioned. Furthermore, the list of references of each publication was reviewed to

EEINT3 2 EEINT3

EEINT
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identify additional documents on the issue not previously found. Selection criteria
strictly corresponded to trace element concentrations on the basis of dry weight
(dw) based on studies performed in situ.

Subsequently this information was summarized in tables. Mean levels of expo-
sure to trace elements in penguins were compared with other marine, aquatic, or
terrestrial birds from different parts of the world. In addition, maps of the distribu-
tion of penguins were included along with records of trace elements, based on the
identification of the different colonies of penguins worldwide (Boersma 2008).
Information about the investigations related to the exposure and effect of trace
elements in penguins was also considered.

A bubble chart was built upon mean concentrations of each trace element
reported in gentoo penguins (Pygoscelis papua) at South Shetland Islands to see
similarities and differences according to biological matrices. First, concentration
values were normalized by log (x + 1) to remove any weighting from dominant
peaks and then analyzed with a Bray-Curtis similarity matrix (Clarke et al. 2006).
Finally, the resultant similarity matrix was analyzed in a two-dimensional
multidimensional scaling (MDS) plot.

Values of the trophic transference coefficient (TTC), as the ratio between the
level of a certain element in the penguin’s body (liver, kidneys, bones, and muscles
together) and the level of the element in stomach contents (Suedel et al. 1994), were
calculated taking into consideration the mean concentration of each element.

3 Exposure to Trace Elements and Its Effects on Penguins

Trace element concentrations measured in different biotic matrices of different
species of penguins are presented in Tables 1, 2, 3,4, 5, 6, 7, 8, and 9. The most
commonly reported trace elements in penguins are Al, As, Cd, Cu, Hg, Mn, Pb, and
Zn, whereas the gentoo penguin is the species that displays the highest concentra-
tion of most trace elements studied. Other trace elements such as Co, Cr, Fe,
Ni, and Se have been poorly studied (Szopinska et al. 2016). Levels of Fe
(23.37-164.26 pg/g) have been reported in feathers of pygoscelid penguins from
Antarctica (Metcheva et al. 2006; Jerez et al. 2011). In the same matrix and region,
levels of Se (1.8-2.0 pg/g) have been linked with a major exposure to Cd and Hg
(Jerez et al. 2011), since Se is known to have a detoxifying effect of these metals
(Smichowski et al. 2006). Cobalt levels have been reported in feathers of chinstrap
and gentoo penguins from Antarctica (0.17-0.25 pg/g, Metcheva et al. 2006).
Nickel has been reported in chinstrap penguins from Antarctica in feces
(3.2-3.7 pg/g), liver (0.07 pg/g), and muscle (<0.03 pg/g) by Metcheva et al.
(2006), and in feathers of pygoscelid penguins (0.24—1.18 pg/g, Jerez et al. 2011).
In the organs of most avian wildlife species from unpolluted ecosystems, Ni
concentrations may vary greatly (0.1-2.0 pg/g, Outridge and Scheuhammer
1993). Chromium levels (1.15-8.08 ng/g) were reported by Jerez et al. (2011) in
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feathers of pygoscelid penguins from Antarctica. Metals such as Mo, V, or Y have
not been reported in penguins.

Feathers constitute the most common biological matrix used in situ for deter-
mining trace elements in penguins (Table 1). Metals are delivered mainly by the
blood supply, which is linked to the feeding habits of the bird (Metcheva et al.
2006). Some evidence shows that the concentration of Hg in feathers reflects levels
in the blood during formation (Dauwe et al. 2005). Trace element burdens in
feathers express past exposure and accumulation during the inter-moult period,
thus they are more representative of long-term rather than acute exposure, at least
for Hg (Furness et al. 1986). Reports in penguin feathers comprise ten species, most
of which are from Antarctica and subantarctic islands (Table 1). Similarly, there is
plenty of information of trace elements in penguin guano, particularly from Ant-
arctica (Table 8), but there are few data on other species that live in lower latitudes,
except for a study of Humboldt penguins (Spheniscus humboldti) from the coast of
Chile (Celis et al. 2014).

There is very little information on trace elements in penguin eggshells (Table 2),
bones (Table 3), and kidneys (Table 4). Concentrations of trace elements in blood,
brain, testicles, embryo, spleen, and heart of penguins have been poorly investi-
gated (Table 9). Studies of trace elements in the liver of penguins (Table 5)
correspond mostly to species that inhabit the Antarctica and subantarctic islands.
Data of trace elements in muscles of penguins are scarce and they are exclusively
focused on species that inhabit Antarctica (Table 6). Studies on metals in stomach
contents of penguins are scarce and all of them have been carried out in Antarctica
(Table 7).

Trace elements are chemicals that occur in natural and perturbed environments
in small amounts (Prashanth et al. 2016). Their inadequate intake can damage the
function of cells, causing physiological disorders and disease (Soria et al. 1995).
These chemicals can be classified according to their biological significance, as
non-essential and essential trace elements. Non-essential elements, such as Pb, Be,
Cd, Hg, As, Sb, and Ti, have no known function in the animal body, and their
presence may produce toxicity. Essential elements (Cr, Co, Cr, Cu, Fe, Mo, Se, Zn,
and Mn) are required in small amounts because they perform vital functions for the
maintenance of animal life, growth, and reproduction (Nordberg and Nordberg
2016). Some trace elements such as Ni, Sn, V, and Al cannot be yet classified as
essential, as their role is not clear in animals, including humans (Prashanth et al.
2016). In general, the information available on concentrations of trace elements is
fragmented in time and space, so it is not possible to build trends. Therefore,
implementations of monitoring programs that incorporate these variables are
required.
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3.1 Non-essential Trace Elements
3.1.1 Aluminum

The maximum concentrations of Al have been found in stomach contents of gentoo
penguins from King George Island, Antarctica (2595 pg/g, Table 7) and in feathers
of adult chinstrap penguins from Deception Island, Antarctica (203.13 pg/g,
Table 1). In contrast, the lowest concentration of Al (0.55 pg/g) has been reported
in livers of Adélie penguins from Avian Island, Antarctica (Table 5). The high Al
levels found in penguins from King George and Deception Islands could be linked
to the abundance of this metal in bioavailable forms in the sediments of these areas
(dos Santos et al. 2005; Deheyn et al. 2005).

Concentrations of Al in penguin feathers (0.71-203.13 pg/g) are highest in adult
chinstrap penguins at Deception Island, whereas the lowest concentrations are in
juvenile Adélie penguins at Avian Island (Table 1). This range is lower than the
concentrations of Al (96-866 pg/g) in feathers of birds from Europe and North
America (Rattner et al. 2008; Lucia et al. 2010). Highest concentrations of Al
(866 pg/g) have been measured in feathers of osprey eagles (Pandion haliaetus)
(Rattner et al. 2008).

Only one study reports the concentration of Al in penguin eggshells (28.96 pg/g,
Table 2), which is higher than that found by Custer et al. (2007) in seagulls of North
America (3.3 pg/g).

Concentrations of Al in penguin bones (4.16-69.95 pg/g) are the highest
in gentoo penguins from King George Island, while the lowest concentrations are
in chinstrap penguins from the same location (Table 3). Studies on levels of Al in
bones of seabirds are scarce, and the few data in penguins are all from species from
genera Pygoscelis and Aptenodytes, being higher than those of birds from the
Northern Hemisphere (1.37-6.9 pg/g, Dauwe et al. 2005).

In kidneys, Al concentrations (0.69-14.12 pg/g, Table 4) are highest in Adélie
penguins from Avian Island and are lowest in chinstrap penguins from King George
Island. In comparison, Al levels in kidneys of aquatic birds from the Southwest
coast of France (6.1-8.9 pg/g, Lucia et al. 2010) are within the range reported in the
penguin kidneys from Antarctica.

Concentrations of Al in the liver (0.55-15.52 pg/g, Table 5) are highest in
chinstrap penguins from Deception Island (Table 5), whereas the lowest concen-
trations of Al correspond to Adélie penguins from Avian Island. There is little
information about the levels of Al in livers of seabirds, although it is possible to see
that the concentrations of Al in penguins are within the range reported in the aquatic
and terrestrial birds from Europe (0.18-37.3 pg/g) (Scheuhammer 1987; Dauwe
et al. 2005).

In muscles, Al concentrations (1.07-114.88 pg/g, Table 6) are highest in
chinstrap penguins from Deception Island, whereas the lowest concentrations are
in the same species from King George Island. Despite the lack of data on seabirds
from other regions, levels of Al in penguin muscles are higher than those found in a
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study carried out from Europe in muscles of the Great tit (0.08—1.46 pg/g, Dauwe
et al. 2005).

Concentrations of Al in penguin stomachs (46.80-2594.6 pg/g, Table 7) are
highest in gentoo penguins from King George Island, whereas the lowest concen-
trations are in Adélie penguins from Avian Island. This range is higher than the
concentrations of Al (0.22-23.5 pg/g) in stomach contents of wild birds from
Europe (Dauwe et al. 2005).

There is only one measurement of Al in excreta (316 pg/g, Table 8), which is
from gentoo penguins at Livingston Island, showing a deficit of information for this
element. No Al was found in guano of other seabirds. Birds are most likely exposed
to Al through their diets, and most Al is excreted via the feces and only a fraction is
retained (Sparling and Lowe 1996).

In blood, the only existing study corresponds to the little penguin (Eudyptula
minor), and Al concentrations (3.19—4.22 pg/g, Table 9) present less variability and
are within the range reported in the seagulls of the Northern Hemisphere
(1.34-4.11 pg/g, Kim et al. 2013).

The main toxic effects of Al that have been reported in animals are produced in
the central nervous system, though long-lasting exposures can also affect the
skeletal system, decreasing its rate of formation and increasing the risk of fractures.
The functioning of the renal, endocrine, reproductive, and cardiac systems is also
affected by a chronic exposure to this metal (Sjogren et al. 2007). In birds, Al is
poorly absorbed and its potential for toxicity is low, thus Al levels in soft tissue do
not necessarily reflect toxicity to the individual (Scheuhammer 1987). Neverthe-
less, there is some evidence indicating that Al found in the bone marrow tissue of
humeri of wild pied flycatchers (Ficedula hypoleuca) can produce small clutches,
defective eggshell formation, and intrauterine bleeding, similar to the symptoms of
Al intoxication in mammals (Nyholm 1981). Al interferes with the deposition of
Ca, resulting in weak bones and eggs, besides affecting the reproductive capacity
(Nayak 2002). No studies have been performed in penguins to determine any
possible effects produced by this metal.

3.1.2 Arsenic

The maximum As concentrations in tissues and organs are in the liver of Adélie
penguins (Pygoscelis adeliae) from King George Island (1.2 pg/g, Table 5) and
kidneys of the same species and location (1.07 pg/g, Table 4). In contrast, the
lowest concentration of As (0.01 pg/g) has been reported in feathers of adult
chinstrap penguins (Pygoscelis antarctica) from Livingston Island, Antarctica
(Table 1). Arsenic tends to accumulate in almost all organs, mainly in the liver
where biomethylation of As takes place producing some kind of acids, such as
monomethylarsonic and dimethylarsonic (Khan et al. 2014).

Concentrations of As in feathers (0.01-0.88 pg/g, Table 1) are highest in adult
gentoo penguins that inhabit Livingston Island, and are lowest in adult chinstrap
penguins from Livingston Island. Arsenic concentrations in feathers of black-
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legged kittiwakes (Rissa tridactyla) and black oystercatchers (Haematopus
bachmani) from Alaska (0.17-0.34 pg/g, Burger et al. 2008) and in feathers of
black-tailed gull chicks (Larus crassirostris) from Korea (0.15-0.44 pg/g, Kim
et al. 2013) are within the range found in the penguins. There is little information on
the levels of As in penguin eggshells (Table 2).

In bones, concentrations of As are highest in gentoo penguins that inhabit Byers
Peninsula (Table 3), while the lowest concentrations are in chinstrap penguins from
Deception Island. Concentrations of As in penguin bones (0.04-0.19 pg/g) are
within the range reported in the aquatic and terrestrial birds of the Northern
Hemisphere (<0.0001-1.60 pg/g, Lebedeva 1997).

In kidneys, As concentrations (0.38-1.07 pg/g, Table 4) are highest in Adélie
penguins from King George Island and lowest in the same species from Avian
island. Arsenic levels in penguin kidneys are within the range found in the kidneys
of passerine birds from the Northern Hemisphere (0.071-1.81 pg/g, Sanchez-
Virosta et al. 2015).

In the liver, the content of As (0.30-1.20 pg/g) is highest in adult Adélie
penguins from King George Island, and the lowest in juvenile same species,
location, and sampling date (Table 5). The highest levels of As in adult penguins
is probably due to the fact that this element accumulates in the animal body, and
thus its level is directly related to the age of the individuals (Khan et al. 2014). The
concentrations of As in penguin livers are lower than those found in seabirds of the
Northern Hemisphere (0.22-5.62 pg/g) (Lucia et al. 2010; Ribeiro et al. 2009;
Skoric et al. 2012).

In muscles, As concentrations (0.18—1.04 pg/g, Table 6) are highest in chinstrap
penguins from Deception Island, and lowest in Adélie penguins from King George
Island. The concentrations of As in penguin muscles are higher than those reported
in wild birds from the Northern Hemisphere (0.01-0.35 pg/g, Gasparik et al. 2010).

In the stomach, As concentrations are highest in Adélie penguins from Avian
Island, and are lowest in the same species from King George Island (Table 7).
Arsenic concentrations in penguin stomach contents (0.28-3.22 pg/g) are higher
than those levels found in wild birds from Europe (0.006-0.76 pg/g, Dauwe et al.
2005).

In excreta, As concentrations are highest in Humboldt penguins from Cachagua
Island (Chile), and lowest in gentoo penguins from O’Higgins Base, Antarctic
Peninsula (Table 8). In general, levels of As in penguin guano (0.15-7.86 pg/g)
are lower than those levels found in guano of wild birds from the Northern
Hemisphere (0.42-16.03 pg/g, Dauwe et al. 2000; Kler et al. 2014).

In blood, the highest As concentration is in the little penguin from Australia
(Table 9). Levels of As in penguin blood (0.67-3.72 pg/g) are higher than those
levels observed in black-tailed gull chicks of the Northern Hemisphere
(0.26-0.48 pg/g, Kim et al. 2013).

Generally, in birds As is initially accumulated in liver and kidneys and subse-
quently it is redistributed to feathers and claws (Sanchez-Virosta et al. 2015). To
counter the effects of exposure to As, organisms have biotransformation mecha-
nisms that decrease its toxicity, in which inactive As metabolites are formed
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(monomethylarsenic and dimethylarsenic), which are more easily removed by the
kidneys (Soria et al. 1995; ATSDR 2007). In ducklings, clinico-pathological effects
caused by sodium arsenate at 30—300 pg/g can produce liver congestion, necrosis
and fibrosis, severe degeneration of brain, and increase mortality (Khan et al. 2014).
In general, the levels of As reported in feathers, blood, and organs of penguins
are below 3 pg/g, the limit considered normal in living organisms (Jerez et al.
2013a), except for the concentrations of As in blood of little penguins that inhabit St
Kilda, on the coast of Australia (3.72 pg/g, Table 6). All the studies performed in
penguins reveal that the concentrations of As are below 50 pg/g known as of
toxicological significance, or that can lead to endocrine disorders (Neff 1997).

3.1.3 Cadmium

This metal is known to bioaccumulate in marine biota from both natural and
anthropogenic sources (Espejo et al. 2014). The maximum concentrations of Cd
(351.8 pg/g) have been found in kidneys of Adélie penguins from Avian Island,
Antarctic Peninsula (Table 4). In contrast, the lowest concentration of Cd
(<0.001 pg/g) has been reported in bones (Table 3) and muscles (Table 6) of
chinstrap penguins and Adélie penguins from Antarctica, respectively. In general,
birds accumulate Cd in their bodies through the food chain, and Cd is first
accumulated in the liver and then transported to several organs (Lee 1996). Cad-
mium concentrations in penguins tended to be higher in kidneys than in the liver, as
also noted in different species of Anseriformes (Jin et al. 2012).

In feathers, the maximum Cd concentrations have been found in adult gentoo
penguins from Livingston Island, and the minimum in juvenile Adélie penguins
from King George Island (0.01-0.50 pg/g, Table 1). In general, Cd concentrations
in penguin feathers are lower than those found in seabirds of the Northern Hemi-
sphere (0.04—1.28 pg/g) (Kim et al. 1998; Agusa et al. 2005; Mansouri et al. 2012).
In eggshells, there is little information on the levels of Cd in penguins (Table 2).

In bones, Cd concentrations (<0.001-0.17 pg/g, Table 3) are maximum in
Adélie penguins from Avian Island, and minimum in chinstrap penguins from
King George Island. The concentrations of Cd in penguin bones are lower than
those reported in bones of seabirds of the Northern Hemisphere (0.03-0.33 pg/g,
Kim et al. 1998).

In kidneys, Cd concentrations (0.2-351.8 pg/g, Table 4) are highest in Adélie
penguins from Avian Island, and are lowest in gentoo and Adélie penguins, both
from King George Island. Cadmium levels in kidneys of gulls (0.90-44.4 pg/g) of
south-western Poland and the Artic (Ortowski et al. 2007; Malinga et al. 2010) are
within the range reported in penguin kidneys. A study found that Cd levels in
kidneys of scoters (Melanitta perspicillata) from the Queen Charlotte Islands in
Canada were as high as 390.2 pg/g, a concentration potentially associated with
renal damage (Barjaktarovic et al. 2002).

In the liver, Cd concentrations (0.06-27.7 pg/g, Table 5) are highest in Emperor
penguins from the Weddell Sea, and are lowest in Adélie penguins from King
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George Island. Cadmium concentrations in penguin livers reveal that 9 of 19 reports
(47.4%) exceeded the threshold levels of toxicity for wild birds (3 pg/g,
Scheuhammer 1987). The Cd levels in penguin livers are comparable with those
levels (0.05-15.1 pg/g) found in seabirds of the Northern Hemisphere (Elliot et al.
1992; Kim and Koo 2007; Pérez-Lopez et al. 2005).

In muscles, Cd levels of seabirds (0.26-0.52 pg/g) from the Northern
Hemisphere (Orlowski et al. 2007; Malinga et al. 2010) are within the range
reported in penguins (<0.001-2.63 pg/g, Table 6). The highest Cd levels are in
Adélie penguins from Avian Island, and are lowest in the same species from
Potter Cove.

In the stomach, Cd concentrations (0.09-2.9 pg/g, Table 7) are highest in Adélie
penguins from Edmonson Point, and are lowest in gentoo penguins from King
George Island. The levels of Cd in penguin stomach contents are far below those
levels of Cd detected in the stomach contents of seabirds from industrialized areas
of Korea (96-217 pg/g) (Kim and Oh 2014b, c).

In excreta, Cd levels are linked to high dietary Cd intake (Ancora et al. 2002). Cd
concentrations (0.16—47.7 pg/g, Table 8) are highest in Humboldt penguins from
Pan de Azicar Island (Chile), and are lowest in Adélie penguins from the Antarctic
Peninsula. Levels of Cd in penguin excreta are higher than those observed in wild
bird species (0.12—1.88 pg/g) of the Northern Hemisphere (Kaur and Dhanju 2013;
Kler et al. 2014).

In birds, the accumulation of Cd can have adverse effects on health, such as renal
and testicular damage, disorder in the balance of Ca and the skeletal integrity,
reduced feed intake and growth rate, decreased egg laying, thinning eggshells, or
alteration in the behavior of the bird, among other effects (Burger 2008; Furness
1996; Larison et al. 2000; Rodrigue et al. 2007). However, seabirds seem to be less
vulnerable to the exposure to high levels of Cd than other wild organisms and birds
of terrestrial environments (Burger 2008; Furness 1996). Highest Cd concentrations
in tissues of marine birds were in kidney tissue of oceanic birds (Elliot et al. 1992;
Pérez-Lopez et al. 2005; Ortowski et al. 2007; Kim and Koo 2007; Malinga et al.
2010). In Pygoscelis penguins from the South Shetland Islands, a ratio kidney/liver
for Cd concentrations of about 4 means a higher Cd affinity for renal tissue (Jerez
et al. 2013b), thus indicating a chronic or sub-chronic exposure to Cd due to
maternal transfer of this metal during egg development, as occurs in other seabirds
(Agusa et al. 2005). A high exposure to Cd causes significant accumulation of this
metal in the soft tissues, because a small proportion is excreted, and release of Cd
from kidney is very slow (Eisler 1985). Thus, under conditions of chronic dietary
exposure, kidney concentrations of Cd may express long-term accumulation
(Scheuhammer 1987).

Toxic effects of Cd appear in humans and other mammals when kidney Cd levels
reach about 100 pg/g ww (Scheuhammer 1987) or about 400 pg/g dw (assuming a
moisture content of 75% in the sample). Seabirds accumulate a large amount of
metals such as Hg in their liver because they usually occupy the highest trophic
positions in the marine food web and have a long life span (Thompson 1990).
However, birds are relatively resistant to some metals, like Cu (Eisler 1998). The
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process of the metal detoxification in livers of seabirds is well described by Ikemoto
et al. (2004). In penguins, some metals interact with others to activate certain phase
I detoxification mechanisms in the organism. A study carried out by Kehrig et al.
(2015) evidenced a correlation between Se and metallothioneins in liver samples of
Magellanic penguins (Spheniscus magellanicus), indicating that Se would be
involved in detoxification of Cd, Pb, and Hg. Another study showed a positive
correlation between Se and Cd in tissues of chinstrap, gentoo, and Adélie penguins,
which would be related to the detoxifying function played by Se against the toxicity
of Cd (Jerez et al. 2011). In this sense, Jerez et al. (2013a) stated that high levels of
Se (30.6 pg/g) and Zn (126.05 pg/g) can protect chinstrap penguins of Deception
Island at least partially against high Cd levels (27.54 pg/g) of toxicological signif-
icance. However, the accumulation of Cd and Se, and likely other heavy metals, can
cause teratogenic effects in a wide range of birds and animal species (Hoffman
2002; Gilani and Alibhai 1990; Ohlendorf et al. 1988; Franson et al. 2007), and
even micromelia in penguins (Raidal et al. 2006). High Se levels of over 10 pg/g in
liver of aquatic birds can produce hepatic toxicity (Lemley 1993). A study found
that 47% of the samples of livers of penguins from Antarctic Peninsula had Se
levels above the mentioned toxicity threshold (Jerez et al. 2013a). However, when
evaluating Se toxicity and oxidative stress, nutritional factors should be taken into
consideration (Franson et al. 2007).

Studies carried out in colonies of some penguins from Antarctica have shown
that kidney samples collected at Weddell sea and Avian Island present high
concentrations of Cd (270.2 and 351.8 pg/g, Table 4), implying that those seabirds
probably presented a chronic exposure to this metal, with levels above the toxicity
threshold established for birds (Furness 1996).

3.1.4 Mercury

The maximum concentrations of Hg (8.16 pg/g, Table 1) have been found in
feathers of adult gentoo penguins from Crozet Islands. In contrast, the lowest
concentration of Hg (0.005 pg/g) has been reported in eggshells of Adélie penguins
from Admiralty Bay, Antarctica (Table 2). As with most seabirds, penguin feathers
constitute an important way of detoxification of Hg (Yin et al. 2008).

In feathers, Hg concentrations (0.033-8.16 pg/g, Table 1) are highest in adult
gentoo penguins from Crozet Islands (Carravieri et al. 2016). The lowest Hg levels
have been reported in juvenile Magellanic penguins from the coasts of Argentina
(Frias et al. 2012). Mercury concentrations in penguin feathers are lower than those
found in different species of seagulls and terns from Northern Hemisphere
(0.31-20.2 pg/g) (Goutner et al. 2000; Zamani-Ahmadmahmoodi et al. 2014) and
in feathers of birds from various locations of the Chilean coast (0.11-13 pg/g,
Ochoa-Acuna et al. 2002). Of the thirty-two reports in penguin feathers, only two
studies are in the range of Hg levels (5—40 pg/g) linked to reduced hatched of egg
laid in various bird species (Eisler 1987). Concentrations of Hg of 9-20 pg/g in
feathers can decrease reproductive success in some piscivorous birds (Fimreite
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1974; Scheuhammer 1987; Beyer et al. 1997; Evers et al. 2008). The range of Hg
concentrations reported in penguin feathers are below those known to cause adverse
health and reproductive effects in birds.

In eggshells, Hg concentrations (0.005-0.26 pg/g, Table 2) are highest in Adélie
penguins from Terra Nova Bay (Bargagli et al. 1998), and are lowest in the same
species in Almiralty Bay (Santos et al. 2006). Mercury levels in penguin eggshells
are lower than those reported in marine, aquatic, and terrestrial birds of other
latitudes (0.05-36.37 pg/g) (Yin et al. 2008; Daso et al. 2015).

In bones, a single study reported Hg concentrations (0.02 pg/g, Table 3) in
Adélie penguins that inhabit the surroundings of the Zhongshan Station (Yin et al.
2008). In general, data of Hg in bones of birds are not abundant, because this metal
is not precisely stored in this biotic matrix, making comparisons difficult. In any
case, levels of Hg in penguin bones are 50% lower than those detected in bones of
seagulls from the coasts of Japan (Agusa et al. 2005) and much lower than those in
great cormorants (Phalacrocorax carbo) from Europe (1.4—1.72 pg/g, Skoric et al.
2012).

In kidneys, Hg concentrations (0.146-2.47 pg/g, Table 4) are highest in
Magellanic penguins from the coast of Southern Brazil (Kehrig et al. 2015). The
lowest levels are reported in Adélie penguins that inhabit King George Island
(Smichowski et al. 2006). Mercury concentrations in penguin kidneys are lower
than those detected in kidneys of seabirds from the Northern Hemisphere
(0.3-5 pg/g) (Arcos et al. 2002; Zamani-Ahmadmahmoodi et al. 2014).

In livers, Hg concentrations (0.269-5.7 pg/g, Table 5) are highest in Magellanic
penguins from the coasts of Southern Brazil (Kehrig et al. 2015). The lowest
concentrations of Hg have been reported in Adélie penguins from Potter Cove,
King George Island (Smichowski et al. 2006). Mercury concentrations in penguin
livers are below those reported in seabirds of the Northern Hemisphere
(4.9-306 pg/g, Kim et al. 1996). In birds, sublethal effects of Hg on growth,
development, reproduction, blood and tissue chemistry, metabolism, behavior,
histopathology, and bioaccumulation have been found between 4 and 40 mg/kg
(dietary intake) (Eisler 1987). The concentrations of Hg in liver of Magellanic
penguins from Rio Grande do Sul, Brazil (5.7 pg/g, Table 5) are higher than the
threshold of toxicity for Hg (Kehrig et al. 2015).

In muscles, Hg is reported by a single study in Adélie penguins (0.6 pg/g,
Table 6) from Terra Nova Bay (Bargagli et al. 1998). Levels of Hg in penguin
muscles are lower than those reported in terns and gulls from Asia (0.9-2.5 pg/g,
Zamani-Ahmadmahmoodi et al. 2014).

In stomachs, Hg (0.08-0.10 pg/g, Table 7) is lowest in Adélie penguins from
Terra Nova Bay (Bargagli et al. 1998) and is highest in the same species from
Edmonson Point (Ancora et al. 2002). It was difficult to find more reports of Hg
levels in bird stomachs. Levels of Hg detected in penguin stomachs are much lower
than those measured in intestines of cormorants from Europe (1.29-2.49 pg/g,
Skoric et al. 2012).

In excreta, Hg concentrations (0.06—6.60 pg/g, Table 8) are highest in gentoo
penguins from O’Higgins Base, and are lowest in chinstrap penguins from Barton
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Peninsula, both locations of the Antarctic Peninsula. Levels of Hg in penguin
excreta are higher than those in other marine birds worldwide (0.10-0.75 pg/g,
Yin et al. 2008).

Mercury concentrations in penguin blood (0.84-2.75 pg/g) and in penguin brains
(0.43 pg/g) are been measured in little penguins from Australia and Adélie penguins
from Terra Nova Bay (Antarctica), respectively (Table 9). Those levels are higher
than those found in the blood of black-tailed gull chicks and Great tits from the
Northern Hemisphere (0.03-0.26 pg/g) (Dauwe et al. 2000; Kim et al. 2013).
Mercury concentrations of over 3 pg/g in blood can affect endocrine systems of
Arctic birds with negative consequences for reproduction (Tartu et al. 2013). In
loons (Gavia immer), Evers et al. (2008) reported an adverse effect threshold for
adult birds at 3 pg/g (w.w) in blood and reproductive failure when adult blood Hg
levels reach 12 pg/g/(w.w). Tartu et al. (2016) found that Hg levels (1.0-1.5 pg/g) in
blood of adult kittiwakes can disrupt prolactin secretion (a pituitary hormone
involved in parental care) which could lead to reduced chick survival.

Chronic exposure to metals may imply a threat to penguins. Some evidence
shows that the survival and breeding success decreased with increasing Hg levels in
blood of Artic seabird (2.28 + 0.42 ng/g, Goutte et al. 2015). Mercury in its organic
form (methylmercury, ethylmercury) is more lipophilic, which favors its accumu-
lation mainly in the liver, kidneys, brain, and feathers. Inorganic Hg is mostly
accumulated in kidneys, due to its affinity to metallothioneins presented by renal
cells (Byrns and Penning 2011). In seabirds, habitat type and functional feeding
group may influence organic Hg bioaccumulation rates at higher trophic levels
(Chen et al. 2008). The direct effects of elevated organic Hg on marine biota can
include changes in brain neurochemical receptor density (Scheuhammer et al.
2008). In pinnipeds, adverse effects may manifest as immunosuppression
(Lalancette et al. 2003). There are few studies on the effects of metals in feathers
and blood of birds, but evidence exits indicating that concentrations of Hg of 5 pg/g
in feathers of birds can cause reproductive impairment (Burger and Gochfeld 1997),
including smaller egg size, lower hatching rate, decreased chick survival, and even
impaired territorial fidelity in waterfowl (Rothschild and Duffy 2005). The few
studies that exist reveal that the concentrations of Hg in biotic matrices of penguins
from Antarctica are below the stated threshold of toxicological significance for
Hg. In general, Hg levels are lower in most of the biological matrices of penguins
than birds from the Northern Hemisphere.

3.1.5 Lead

Excepting excreta, the maximum concentrations of Pb (almost 1.90 pg/g) have been
found in feathers of adult gentoo penguins from Livingston Island (Table 1) and in
bones of Adélie penguins from East Antarctica (1.60 pg/g, Table 3). In contrast, the
lowest concentration of Pb (<0.001 pg/g) has been reported in kidneys (Table 4),
liver (Table 5), and muscles (Table 6) of gentoo penguins from King George Island.
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Lead is not metabolically regulated (Gochfeld et al. 1996), and unlike Cd, tends to
be accumulated in bird feathers (Jerez et al. 2011).

In feathers, Pb concentrations (Table 1) are highest (almost 1.90 pg/g) in adult
gentoo penguins from Livingston Island. On the other hand, Pb levels are lowest
(<0.01 pg/g) in juvenile Adélie penguins from King George Island. The highest
concentration of Pb in penguin feathers is directly related to major human activity
(Jerez et al. 2011, 2013a). Levels of Pb in penguin feathers are lower than those
concentrations found in feathers (0.34-7.15 pg/g) of different seabirds of the
Northern Hemisphere (Kim et al. 1998; Burger et al. 2008; Ribeiro et al. 2009;
Skoric et al. 2012; Kim and Oh 2014b). Lead concentrations of 4 pg/g (dw) in
feathers are known to be a threshold level for toxicity (Burger and Gochfeld 2000b).

In eggshells, Pb levels in penguin eggshells are rare. The highest Pb concentra-
tions (0.75 pg/g, Table 2) have been found in gentoo penguins from Fildes Penin-
sula (Yin et al. 2008). Levels of Pb (0.68-0.75 pg/g) in eggshells of penguins are
lower than those reported in seabirds (1.25-3.10 pg/g) of the Northern Hemisphere
(Yin et al. 2008; Kim and Oh 2014a).

In bones, Pb concentrations (<0.001-1.60 pg/g, Table 3) are highest in Adélie
penguins from Zhongshan Station (Yin et al. 2008), and are lowest in Pygoscelis
penguins from King George Island and Byers Peninsula (Barbosa et al. 2013; Jerez
et al. 2013a). The concentrations of Pb in bones of penguins are lower than those
reported in bones of marine, aquatic, and terrestrial bones (0.04—42.32 pg/g) of the
Northern Hemisphere (Lebedeva 1997; Kim et al. 1998; Ortowski et al. 2007; Yin
et al. 2008). Lead is known to be a toxic metal, and the skeleton is the main depot
for these elements (Lebedeva 1997). Lead levels >10 pg/g in bone of wild birds are
considered to be toxic, and so may be interpreted as a result of relatively polluted
habitats (Scheuhammer 1987). Bone Pb concentrations higher than 20 pg/g are
considered as excessive exposure for waterfowls (Franson 1996). Levels in penguin
bones are far below those threshold values, which suggest that the biological effect
should be neglected.

In kidneys, Pb concentrations (<0.001-0.55 pg/g, Table 4) are highest in
Magellanic penguins from the coast of Southern Brazil (Kehrig et al. 2015), and
are lowest in gentoo penguins from King George Island (Jerez et al. 2013b).
Concentrations of Pb in penguin kidneys are lower than those of seabirds from
the Northern Hemisphere (0.14—11.18 pg/g) (Kim et al. 1998; Ortowski et al. 2007).
Lead concentrations above 68 pg/g in kidneys of snowy owls (Nyctea scandiaca)
are linked to bird’s mortality (Franson 1996).

In the liver, Pb levels varies from <0.001 to 0.58 pg/g (Table 5) with the highest
concentrations in Magellanic penguins from the coasts of Southern Brazil (Kehrig
et al. 2015). The lowest levels are reported in gentoo penguins from King George
Island (Jerez et al. 2013b). Concentrations of Pb in penguin livers are lower than
values (0.50-3.71 pg/g) found in seabirds of Asia (Kim et al. 1998; Kim and Koo
2007; Kim and Oh 2014c¢). A study conducted in South Korea (Kim and Oh 2014c)
found that high levels of Pb in liver (6.2 pg/g) could negatively affect both behavior
and growth of chicks of the black-tailed gull. Concentrations of Pb in livers of
penguins are far below this threshold value. Hepatic Pb concentrations of over
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30 pg/g in waterfowls can produce Pb poisoning, which is characterized by impac-
tion of the upper alimentary tract, submandibular edema, myocardial necrosis, and
biliary discoloration of the liver (Beyer et al. 1998).

In muscles, Pb concentrations (Table 6) are highest (almost 0.60 pg/g) in gentoo
penguins from Livingston Island (Metcheva et al. 2010), and are lowest
(<0.001 pg/g) in the same species of King George Island (Jerez et al. 2013b). In
general, the levels of Pb in penguin muscles are lower than those reported in
seabirds (0.014-3.59 pg/g) of the Northern Hemisphere (Kim et al. 1998; Ortowski
et al. 2007).

In the stomach, Pb concentrations (0.03-0.71 pg/g, Table 7) are highest in
gentoo penguins from King George Island, and are lowest in chinstrap penguins
from King George Island. The levels of Pb in stomach contents of penguins are
lower than those levels of Pb (0.059-105.0 pg/g) detected in stomach contents of
seabirds from the Northern Hemisphere (Kim et al. 1998; Kim and Oh 2014b, c).

In excreta, Pb concentrations (0.08-12.79 pg/g, Table 8) are highest in Hum-
boldt penguins from Cachagua Island (Celis et al. 2014), while the lowest levels
were reported in gentoo penguins from Neko Harbor, Antarctic Peninsula (Celis
et al. 2015b). In general, levels of Pb in penguin guano are lower than the
concentrations of Pb (3.90-124.8 ng/g) in guano of aquatic and terrestrial birds
from the Northern Hemisphere (Dauwe et al. 2000; Martinez-Haro et al. 2010; Kler
et al. 2014).

In blood, Pb concentrations (0.04—0.07 pg/g, Table 9) have been measured only
in little penguins from the coast of Australia. Those Pb levels are below the
deleterious effect level of 4 pg/g (Finger et al. 2015), and are also lower than
those reported in gulls from the Northern Hemisphere (0.06-0.18 pg/g, Kim et al.
2013). Some biological functions of birds can be altered when Pb levels in blood
>3 pg/g and Pb levels >6 pg/g can produce uremic poisoning (Franson 1996).

In birds, it has been observed that the exposure to Pb in young individuals of the
herring gull (Larus argenteus) and the common tern (Sterna hirundo) affects
behavioral development, growth, locomotion, balance, search for food, thermoreg-
ulation, and recognition between individuals (Burger and Gochfeld 2000a). Pb is
transported through blood bonded to hemoglobin, reaching the liver, kidneys, bone
marrow, and central nervous system. Nevertheless, Pb can be stored in tissues rich
in Ca such as hairs, feathers, and bones, where it can remain for many years
(O’Flaherty 1998). Lead in penguin bones is accumulated throughout the lifetime
of the individual, and so its presence in bones may be considered an indicator of
long-term exposure (Barbosa et al. 2013). A study for Pygoscelis penguins from
Antarctica found that Cd, Ni, Pb, and Se levels in muscles are long-term dependent
(Jerez et al. 2013a). High concentrations of Cu might increase the effects of
toxicological significance in penguins caused by Pb (Eisler 1988).

Feces can be used to detect adverse toxicological effects in wildlife by means of
porphyrins, which can be correlated with metals measured in the same sample
(Mateo et al. 2016). A study showed a strong affinity between the levels of Pb with
porphyrins in excreta of gentoo penguins (Celis et al. 2012), which may be
associated with hepatic and renal damage (Casini et al. 2003). Available data



W. Espejo et al.

indicate that concentrations of Pb in guano of penguins in the Antarctica have
increased in the last 200 years as a result of greater local anthropogenic activity
(Sun and Xie 2001). Studies that are able to show the possible biological effects of
Pb on these populations of polar seabirds are needed.

Negative correlations between Pb—Cu and Pb—Fe have been found in livers of
Pygoscelis penguins (Jerez et al. 2013a), indicating the capability of Pb (a metal
directly linked to various anthropogenic activities) to use the transport mechanisms
of the essential cations, preventing them from performing their metabolic function
(Ballatori 2002). Penguin species from higher latitudes could be more vulnerable to
the effects of trace elements due to their less effective immunological systems in
such environments in comparison to other species of penguins that live in lower
latitudes (Boersma 2008; Cooper et al. 2009).

There are few studies on the exposure to heavy metals in penguins and it is
necessary to progress in the use of non-destructive biomarkers and non-invasive
matrices (i.e., feathers or fecal material) or semi-invasive such as blood tissue.
Porphyrins have proved to be useful biomarkers of exposure to contaminants
(Casini et al. 2003), because they are capable of bonding to metals and they can
be detected in different biological matrices (De Matteis and Lim 1994). Some trace
metals can interfere with the biosynthesis of hemoglobin and cause alterations in
the porphyrins, which are accumulated or excreted (Casini et al. 2001). Byproducts
such as copro- uro- and protoporphyrins are not toxic in normal concentrations, but
when there is an excess they can affect the liver and bone marrow (Lim 1991). A
study showed a positive correlation between the levels of porphyrins and those of
Hg and Pb in guano of gentoo penguins (Celis et al. 2012). Another study carried
out in Humboldt penguins found that the levels of porphyrins were directly corre-
lated with the concentrations of As, Pb, and Cu, thus there exists a high probability
that these penguins might develop hepatic and renal damage because of the
exposure to these metals (Celis et al. 2014). The higher concentrations of metals
in penguin excreta suggest a physiological mechanism of detoxification (Ancora
et al. 2002), although this may also imply that those trace elements are not absorbed
at the intestinal level. It has been observed that when birds present renal damage
caused by Cd, the levels of this metal in excreta are increased (Goyer 1997). Lead
concentrations in all of the biotic matrices of penguins studied are lower than those
Pb levels found in marine, aquatic, and terrestrial birds of the Northern Hemisphere,
which is highly industrialized and where human population is concentrated.

3.2 Essential Trace Elements
3.2.1 Copper
In general, there are not enough data available on the toxicity of Cu to avian

wildlife. Birds, when compared to lower forms (fish, amphibians) are relatively
resistant to Cu (Eisler 1998). With the exception of excreta, the maximum
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concentrations of Cu have been found in the liver of gentoo penguins from King
George Island (386.1 pg/g, Table 5). In contrast, the lowest concentration of Cu
(0.06 pg/g) has been reported in bones of Adélie penguins from the same location
(Table 3). There is evidence showing that Cu levels of 1050 pg/g in the livers of
eiders can cause liver necrosis and fibrosis (Norheim and Borch-Iohnsen 1990). In
pygoscelid penguins, Cu levels over 24 pg/g in the liver (Szefer et al. 1993) could
represent an additional stress to birds already facing stressful conditions, such as
starvation (Debacker et al. 2000).

In feathers, Cu concentrations (6.87-20.89 pg/g, Table 1) are highest in adult
gentoo penguins from O’Higgins Base (Celis et al. 2015b), whereas they are lowest
in juveniles of the same species from King George Island (Jerez et al. 2013b).
Levels of Cu in penguin feathers are higher than those concentrations found in
feathers of different seabirds (7.56—11.2 pg/g) of the Northern Hemisphere (Kim
et al. 1998; Malinga et al. 2010).

In eggshells, Cu concentrations in penguins are scarce and there is a single study
(1.24 4+ 0.4 pg/g, Table 2) in gentoo penguins from Livingston Island (Metcheva
etal. 2011). Copper concentrations in penguin eggshells are comparable to those Cu
levels reported in eggshells of birds from other latitudes (0.42-7.54 pg/g) (Dauwe
et al. 2000; Yin et al. 2008; Kim and Oh 2014a).

In bones, Cu concentrations (0.06—1.15 pg/g, Table 3) are highest in colonies of
Gentoo penguins from Byers Peninsula (South Shetland Islands). Concentrations of
Cu in penguin bones are lower than those Cu levels found in bones of marine,
aquatic, and terrestrial birds of the Northern Hemisphere (0.37-60 pg/g) (Lebedeva
1997; Kim et al. 1998; Ortowski et al. 2007; Yin et al. 2008).

In kidneys, Cu has been reported between 1.6 and 19.99 pg/g (Table 4), with the
highest concentrations in Gentoo penguins from King George Island, whereas the
lowest levels correspond to Adélie penguin from Potter Cove (King George Island).
Levels of Cu in penguin kidneys are lower than those found in kidneys of Artic
seabirds (12.2-27.8 pg/g) (Kim et al. 1998; Malinga et al. 2010).

In livers, Cu concentrations (10.91-386.1 pg/g, Table 5) are highest in colonies
of gentoo penguins from King George Island, and are lowest in Adélie penguins
from the same location. The levels of Cu in livers of Antarctic penguins are higher
than those detected in other seabirds of Asia and Europe (0.26-92.5 pg/g) (Kim and
Koo 2007; Pérez-Lopez 2005; Ribeiro et al. 2009; Malinga et al. 2010). A study
found that mute swans (Cygnus olor) from estuaries in Britain had more than
2000 pg/g of Cu in their blackened livers (Bryan and Langston 1992).

In muscles, Cu concentrations (4.43-9.95 pg/g, Table 6) are highest in colonies
of gentoo penguins from King George Island (Jerez et al. 2013a), whereas they are
lowest in Adélie penguins from King George Island (Jerez et al. 2013b). Levels of
Cu in penguin muscles are within the range reported in the muscles of seabirds from
Northern Hemisphere (3.59-18.3 pg/g) (Kim et al. 1998; Malinga et al. 2010;
Ortowski et al. 2007).

In stomachs, Cu levels (4.85-66.42 pg/g, Table 7) presented the highest value in
Adélie penguins from Avian Island, and the lowest levels in the same species from
King George Island. The levels of Cu in penguin stomach contents are higher than
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those detected in seabirds of the Northern Hemisphere (4.89-14.0 pg/g) (Kim et al.
1998; Kim and Oh 2014b).

In excreta, Cu concentrations (37.6-585.8 pg/g) are highest in colonies of Adélie
penguins from Kopaitic Island, and are lowest in chinstrap penguin from the
Antarctic Peninsula (Table 8). Levels of Cu in penguin guano are higher than
those values (10-150.8 pg/g) found in excrement birds from other parts of the
world (Dauwe et al. 2000; Yin et al. 2008; Kler et al. 2014). A study in excreta of
Humboldt penguins found that the levels of porphyrins were directly correlated
with the concentrations of As, Pb, and Cu (Celis et al. 2014), and those birds might
present some hepatic and renal disorder (Casini et al. 2003).

In blood, Cu concentrations (2.14-2.48 pg/g, Table 9) are only reported in little
penguins from Australia. Copper concentrations in penguin blood are within the
range reported in the seagulls, eiders, and ducks of the Northern Hemisphere
(0.64-2.56 pg/g) (Franson et al. 2003; Kim et al. 2013).

In general, marine birds retain a very small portion of Cu and other metals
ingested (Bryan and Langston 1992). Although Cu is an essential metal, in excess it
can produce a series of metabolic, pulmonary, hepatic, and renal toxic effects (Soria
et al. 1995). Copper can increase the toxic effects caused by Pb in birds, fishes, and
invertebrates (Eisler 1988). In birds, Cu is accumulated in the liver and bone
marrow, being associated with metallothionein and thus preventing an excess of
free ions of this element (Eisler 1998). However, this protective mechanism is
limited and lesions can be produced in the liver (ATSDR 2004).

3.2.2 Manganese

Excepting excreta and stomach contents, the maximum concentrations of Mn have
been found in bones (18.35 pg/g, Table 3) and the liver (15.83 pg/g, Table 5) of
gentoo penguins from Byers Peninsula and Adélie penguins from King George
Island, respectively. In contrast, the lowest concentration of Mn (<0.01 pg/g) has
been reported in feathers of juvenile Adélie penguins from Avian Island, Antarctica
(Table 1).

In feathers, Mn concentrations range <0.01-3.26 pg/g (Table 1), with the
highest levels in chinstrap penguins at Deception Island and the lowest in Adélie
penguins at Avian Island. This range in penguin feathers is lower than those found
in seabirds from the Northern Hemisphere (0.003-19.29 pg/g) (Burger et al. 2008;
Kim et al. 2013), and also is lower than Mn levels detected in feathers of adult
seabirds from industrialized and populated areas, such as the Brazilian coasts
(11.4 pg/g, Barbieri et al. 2010).

In eggshells, there is only one study reporting concentrations of Mn
(0.82 £ 0.08 pg/g, Table 2) in gentoo penguins from Livingston Island (Metcheva
et al. 2011). Manganese concentration in penguin eggshells is within the range
reported in the seabirds of the United States and Spain (0.29-4.63 pg/g) (Gochfeld
1997; Morera et al. 1997).
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In bones, Mn concentrations (2.5-18.35 pg/g, Table 3) are highest in gentoo
penguins from Byers Peninsula (Barbosa et al. 2013), and are lowest in the same
species from Livingston Island (Metcheva et al. 2010). Concentrations of Mn in
bones of penguins are within the range reported in the bones of marine, aquatic, and
terrestrial birds of the Northern Hemisphere (1.06-30.6 pg/g) (Lebedeva et al.
1997; Kim et al. 1998).

In kidneys, Mn concentrations (3.78—11.18 pg/g, Table 4) are highest in chicks
of Adélie penguins from King George Island during the 2008-2009 austral summer
season, and are lowest in adult Adélie penguins from the same location during
austral summers of 2007-2010. Manganese concentrations are higher in penguin
chicks than those of adult specimens. Although Mn levels detected in individuals of
the same species seem to show a temporal variability, the age of the birds seems to
be relevant; birds regulate Mn primarily by excretion in the feces (Kler et al. 2014),
and probably Mn intake from food in chicks exceeds excretion (Skoric et al. 2012).
Concentrations of Mn in penguin kidneys are within the range found in the kidneys
of Arctic seagulls (<0.01-20.1 pg/g; Malinga et al. 2010).

In the liver, Mn concentrations (6.8—15.83 pg/g, Table 5) are highest in Adélie
penguins from King George Island and are lowest in the same species from the
Antarctic Peninsula. Levels of Mn in penguin livers are comparable to values
reported in seabirds from Asia and Artic (4.14-20.3 pg/g) (Kim et al. 1998; Malinga
et al. 2010).

In muscles, Mn concentrations (0.46—2.55 pg/g, Table 6) are highest in chinstrap
penguins from Deception Island and are lowest in gentoo penguins from the
Antarctic Peninsula. Concentrations of Mn in penguin muscles are slightly lower
than the concentrations of Mn in muscle tissues of Arctic birds (1.84-2.56 pg/g)
(Campbell et al. 2005; Burger et al. 2008).

In the stomach, Mn levels (2.20-82.43 pg/g, Table 7) are highest in gentoo
penguins from King George Island and are lowest in Adélie penguins from Avian
Island. The levels of Mn in penguin stomach contents are higher than those of Mn
(0.98-15.9 pg/g) detected in stomach contents of seabirds from the Northern
Hemisphere (Kim et al. 1998; Kim and Koo 2007).

In excreta, Mn levels (12.3—-138 pg/g, Table 8) are highest in chinstrap penguins
from the Antarctic Peninsula and are lowest in gentoo penguins from Livingston
Island. Concentrations of Mn in penguin droppings are within the range
(0.03-221.8 pg/g) found in the guano of different avian species from Asia
(Lebedeva et al. 1997; Kaur and Dhanju 2013; Kler et al. 2014).

In animals, Mn is a neurotoxic metal that can affect several neural activities, and
at concentrations of about 1000 pg/g, it has negative effects on certain brain
functions (§aric and Lucchini 2007). Mn is distributed via blood linked to proteins
(eg. albumin), being accumulated in tissues rich in mitochondria, such as hepatic
and renal tissue (Erikson and Aschner 2003; Soria et al. 1995). Effects produced by
an acute exposure to Mn include irritation in the digestive tract, respiratory disor-
ders, cardiac ailments, coma, and even death (Soria et al. 1995). In turn, chronic
intoxication with this metal generates neurological, reproductive, pulmonary, and
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immune alterations (ATSDR 2008). The elimination of Mn is produced mainly
through the gastrointestinal tract (Roth 2006).

No research has been done related to the effects of Mn on penguins. It is an issue
because increases in the environmental Mn levels have been related to the current
use of Mn as additive in combustibles (Burger and Gochfeld 2000b). There is recent
evidence showing that Mn levels in hepatic tissues of Antarctic penguins (Jerez
et al. 2013a) are slightly higher than those detected two decades ago (Honda et al.
1986; Szefer et al. 1993).

3.2.3 Zinc

With the exception of excreta, the maximum concentrations of Zn (330.3 pg/g)
have been found in livers of chinstrap penguins from King George Island (Table 5)
and in bones of the same species from Byers Peninsula, Antarctica (Table 3). In
contrast, the lowest concentration of Zn (4.07 pg/g) has been reported in eggshells
of gentoo penguins from Livingston Island, Antarctica (Table 2).

In feathers, the range of Zn concentrations (33.26—119.72 pg/g, Table 1) indi-
cates that the highest concentrations are in adult gentoo penguins from King George
Island (Jerez et al. 2013a) and the lowest are in juvenile same species from Doumer
Island. Zn levels in penguin feathers are similar to those Zn levels found in feathers
of different seabirds of the Northern Hemisphere (42.9-189.2 pg/g) (Kim et al.
1998, 2013; Ribeiro et al. 2009; Lucia et al. 2010).

In eggshells, studies on Zn in penguins are not abundant. Zinc concentrations
(4.07-8.3 pg/g, Table 2) are highest in Adélie penguins from Admiralty Bay, and
are lowest in gentoo penguins from Livingston Island, South Shetland Islands. The
levels of Zn in penguin eggshells are lower than those detected in water birds and
seabirds of the United States and the Artic (9.04-58.1 pg/g) (Custer et al. 2007,
Malinga et al. 2010).

In bones, the range of Zn (81-244.6 ng/g, Table 3) indicates the highest
concentrations are in gentoo penguins from Byers Peninsula, whereas the lowest
concentrations are in the same species from Livingston Island. The concentrations
of Zn in penguin bones are similar to those Zn levels reported in bones of marine
birds of the Northern Hemisphere (83.9-202 pg/g) (Kim et al. 1998; Yin et al. 2008;
Skoric et al. 2012).

In kidneys, Zn concentrations (85.74-234.3 pg/g, Table 4) are highest in Adélie
penguins from Avian Island. In contrast, the lowest Zn concentrations are in the same
species from King George Island. Levels of Zn in penguin kidneys are higher than
those Zn levels found in kidneys of marine birds from the North Pacific and Artic
seabirds (30.2—-183 pg/g) (Kim et al. 1998; Sagerup et al. 2009; Malinga et al. 2010).

In the liver, Zn concentrations (72-330.34 pg/g, Table 5) are highest in chinstrap
penguins from King George Island, and are lowest in gentoo penguins from
Livingston Island. Concentrations of Zn in penguin livers are above those Zn levels
found in seabirds of the Northern Hemisphere (14.92-541 pg/g) (Parslow et al.
1973; Kim and Koo 2007; Pérez-Lopez et al. 2005). A study found that a high
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concentration of Zn (541 pg/g) in livers of northern gannets (Morus bassanus)
could be the main cause of the bird’s mortality (Parslow et al. 1973).

In muscles, Zn concentrations (24—163.75 pg/g, Table 6) indicate the highest
concentrations are in Adélie penguins from King George Island, while the lowest
concentrations are in gentoo penguins from Livingston Island. Levels of Zn in
seabirds (53.2-75.5 pg/g) of the Northern Hemisphere (Kim et al. 1998; Malinga
et al. 2010) are within the range found in the penguin muscles.

In stomachs, Zn levels (19.84-71.16 pg/g, Table 7) are highest in Adélie
penguins from King George Island, and are lowest in gentoo penguins from the
same location. Concentrations of Zn in penguin stomach contents are within the
range (6.64—102 pg/g) found in the seabirds of the Northern Hemisphere (Kim et al.
1998; Kim and Koo 2007).

In excreta, the range of Zn (0.83-487.1 pg/g, Table 8) shows the highest concen-
trations in Humboldt penguins from Pan de Azicar Island, while the lowest levels are
in the same species from Cachagua Island. Concentrations of Zn in penguin drop-
pings are lower than those (100-721.8 pg/g) found in marine birds and different avian
species of the Northern Hemisphere (Yin et al. 2008; Kaur and Dhanju 2013).

In blood, only a single study has measured Zn levels in little penguins
(33.47-38.77 pg/g, Table 9). These levels are within the range detected in the
long-tailed ducks (Clangula hyemalis) and nesting common eiders (Somateria
mollissima) from Alaska (18.2-39 pg/g) (Franson et al. 2003).

Despite the fact that Zn is an essential metal, some pancreas histological damage
has been detected in birds at high Zn levels (Eisler 1993). In birds, Zn accumulated
in liver bonded to metallothionein, though it can also be accumulated in muscles
and bones (Wastney et al. 2000). In seabirds, there is a significant positive corre-
lation between renal Zn and Cd, which evidences a possible effect of
metallothionein synthesis caused by Cd accumulation (Honda et al. 1990; Malinga
et al. 2010). Evidence shows that Zn poisoning in birds usually occurs when the
concentration of this metal exceeds 2100 pg/g in the liver or kidney (Eisler 1993).
The concentrations of Zn in livers of penguins are below 200 pg/g (Table 5),
considered as the threshold value of physiological importance in different species
of seabirds (Honda et al. 1990), except that found in liver of chinstrap penguins
(330.3 pg/g) and in livers of gentoo penguins (237.2 pg/g) from King George
Island. These levels of Zn seem to be related to the great concentration of human
activities present in King George Island (Tin et al. 2009).

4 Similarities and Differences of Trace Elements

4.1 Distribution of Trace Elements

There is great similarity (82%) between concentrations of trace elements in guano
and stomach contents of penguins (Fig. 2). Likewise, the levels of trace elements in



W. Espejo et al.

Similarity
Liver 81
------- 82

85

0-8

B. As Kidneys
0.2 Excreta

C. cd
0-3 >
D. Pb 5

0-07 * 4 /i
E. Hg / / Feather

0-05 g”
F. Cu ; v
0-6 Q4 A " Muscles

0-6
H. Mn Stomach Content

0-4

Fig. 2 Bubble chart for mean concentrations of metals in different biological matrices of
Pygoscelis papua reported from South Shetland Islands. Data taken from Barbosa et al. (2013),
Brasso et al. (2014), Celis et al. (2015b), Espejo et al. (2014), Jerez et al. (2011), Jerez et al.
(2013a, b), Metcheva et al. (2006, 2010, 2011), Santos et al. (2006), Yin et al. (2008)

kidneys and livers present great similarity (81%), which may be due to the fact that
both organs have similar mechanisms of detoxification and biotransformation of
elements (Sanchez-Virosta et al. 2015). Furthermore, there is also 85% similarity
between the concentrations of trace elements in feathers and muscles. Due to
sampling constraints, it is not easy to establish relationships between the concen-
trations in feathers and the concentrations found in the internal tissues of penguins,
even though some previous works have found some relationship between feathers
and muscle tissues for some trace elements in birds (Del Hoyo et al. 1992). Metal
levels in eggs and bones presented no correlation with the other biotic matrices.
Some metals (as Pb, Cd) are not metabolically regulated and tend to be immobilized
in bird bones (Lebedeva 1997) and eggshells (Kim and Oh 2014a). Both biological
matrices are mainly composed of Ca, which is one of the most important plasma
constituents in mammals and birds, and provides structural strength and support to
bones and eggshells (De Matos 2008). Trace elements such as Pb and Cd might
interact with the metabolic pathway of Ca (Scheuhammer 1987).

A high content of elements in penguin excreta imply a physiological mechanism
of detoxification (Ancora et al. 2002), but also imply that elements are not neces-
sarily absorbed at the intestinal level, which reinforces the fact that high concen-
trations of trace elements in feces are likely the result of low intestinal absorption
rather than detoxification mechanisms, and much of the elements ingested by these
seabirds are being excreted. It is observed that when some bird present renal
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damage caused by Cd, the levels of this metal in excreta is increased (Goyer 1997).
In penguins, feathers play an important role in detoxification of Hg and Pb, because
a large amount of these metals from their diets can be transferred into their
plumages (Stewart et al. 1997; Ancora et al. 2002; Jerez et al. 2011). Other metals
such as Cd, Cu, and Zn are mainly eliminated via the feces (Ancora et al. 2002; Yin
et al. 2008). In general, sequestration of metals (such as Hg or Pb) in bird’s feathers
results in decreased internal bioavailability (Jerez et al. 2011; Calle et al. 2015).
Diet, exposure levels, physiological conditions, and the toxic-kinetic mechanisms
regulate the arrival of metals to feathers, as in the case of Hg (Becker et al. 2002).
Redistribution to plumage occurs during feather growth when the feather is
connected to blood vessels, and metals are incorporated in the keratin structure
(Burger et al. 2011). When the feather matures, blood vessels shrivel, and the
feather is no longer supplied with blood, at which point metal deposition to the
feather ceases (Burger 1993). Hg elimination is possible via deposits in eggs,
excreta, uropygial gland, and feathers (Dauwe et al. 2000). In seabirds, Hg concen-
trations in feathers reflect the uptake and storage of this heavy metal during the
period between molts rather than short-term uptake (Furness et al. 1986).

In general, trace element levels in penguins are scarce and fragmented; there-
fore, no correlation analysis is possible now. Data of trace elements available in
Pygoscelis penguins of the South Shetland Islands indicate that the levels of Cd in
gentoo, chinstrap, and Adélie penguins that live there are strongly influenced by
diet, which has also been noted in populations of seagulls from the Northern
Hemisphere (Kim and Oh 2014c). In birds, trace element levels in blood reflect
recent dietary exposure and often correlate strongly with those in internal tissues
(Monteiro and Furness 2001). A study evidenced that blood provides a more precise
indicator of penguin body burden for Al, As, Cd, Cu, Fe, Hg, Pb, Se, and Zn than
feathers (Finger et al. 2015).

At present, most Hg pollution resides in aquatic environments, where it is
converted to methylmercury (Chen et al. 2008). Because of its high affinity with
sulfydryl groups of proteins, this heavy metal is easily incorporated into the food
chain, bioaccumulating in aquatic organisms, and bioamplifying from one trophic
level to the next (Fitzgerald et al. 2007). Some metals such as Zn and Cd among
others might be biomagnified under certain environments such as Antarctica, a cold
place where trophic chains are short and highly dependent on krill (Majer et al.
2014). The whole trophic transference coefficient (TTC) for gentoo penguins at
King George Island is 0.01 for Al, 0.21 for As, 39.55 for Cd, 0.21 for Pb, 1.45 for
Cu, 6.90 for Zn, and 0.05 for Mn (no data were available for Hg levels in stomach
contents of the species at that location). The value of TTC is usually <1 for trace
metals (Anan et al. 2001), except for those metals highly cumulative in the
organism which are biomagnified in the trophic chain, such as Hg (Lavoie et al.
2013). Cd and Zn showed a high cumulative power in gentoo penguins, with TTC
values far above unity. Scientific evidence indicates that Zn, Se, Cu, and Cd tend to
bioaccumulate in aquatic trophic chains (Dehn et al. 2006; Mathews and Fisher
2008). This suggests the possibility of metal biomagnification under specific cir-
cumstances. It has been found that biomagnification of Hg is expressed more
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strongly in cold environments with simple trophic chains (Lavoie et al. 2013). This
issue should be addressed in depth in further studies, considering the diversity of
marine environments in which the different species of penguins feed.

4.2 Geographical Differences

Most studies of levels of trace elements in penguins (Table 10, Fig. 3) have been
carried out in Antarctica and nearby islands. The most reported trace elements are
Pb, Cd, Cu, and Zn. In contrast, Al and Mn are the least reported elements. The lack
of studies on trace elements in penguins from the coasts of Australia, South Africa,
and Galapagos Islands is clearly noted. Most of the field studies of trace elements
are concentrated in the Antarctic and subantarctic areas (>85%), specifically in the
Antarctic Peninsula and South Shetland Islands; the rest of the studies are concen-
trated in the coasts of South America, Subtropical Front (Indian Ocean), and coasts
of Australia. Further studies are needed in order to overcome the huge gap of data
between Antarctica and other territories of more temperate zones where there are
colonies of other species of penguins. Differences in trace element concentrations
in the same species at different sites are evidenced in gentoo penguins, because they
have a large distribution and a very plastic diet depending on site. Gentoo penguins
at Crozet Islands have higher feather Hg concentrations (Carravieri et al. 2016) than
those reported at Antarctic locations (Bargagli et al. 1998). Gentoo penguins at
subantarctic areas have higher feather Hg concentrations than those reported at
Antarctic locations (Table 1). Gentoo penguins at higher latitudes feed largely on
krill (Carlini et al. 2009), whereas they prey mainly on fish at lower latitudes
(Lescroél et al. 2004). Krill is a pelagic low-trophic prey very abundant in Antarc-
tica with lower Hg burden compared to fish (Bargagli et al. 1998; Bustamante et al.
2003).

Due to the lack of data, the comparison of the levels of trace elements among
different species and populations of penguins must be taken with caution. In
general, the concentrations of trace elements are fragmented from the spatio-
temporal point of view, which prevents for now conducting an analysis of tenden-
cies. Hence, the implementation of monitoring programs that incorporate these
variables is required.

4.3 Interspecific Differences

There are 18 species of penguins that inhabit the planet (Garcia and Boersma 2013),
but trace metals have been reported only in 11 species, evidencing the information
gap in species such as Eudyptes pachyrhynchus, Eudyptes sclateri, Eudyptes
robustus, Eudyptes schlegeli, Spheniscus demersus, Spheniscus mendiculus, and
Megadyptes antipodes. The species with more elements reported are P. papua,
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P. adeliae, and P. antarctica. On the other hand, the least studied species are
E. chrysocome and E. chrysolophus. It is necessary to state that the distribution of
trace elements by species from different studies, species, and individuals presents
serious limitations because of temporal variation, spatial variation, diet, individual
specialization, physiological condition, and sex.

In Adélie, gentoo, and chinstrap penguins, concentrations of the essential trace
elements Cu, Mn, and Zn in all biotic matrices exhibited less inter-species variation
than the non-essential Al, As, Cd, Hg, and Pb, expressed through the coefficient of
variation. These results are in agreement with similar findings of other investiga-
tions in seabirds (Honda et al. 1990; Lock et al. 1992). Penguins, by virtue of their
members exhibiting a wide range of trace element burdens, along with variation in
diet, varying moult strategies and variation in their average life spans may explain
inter-species pattern of metal accumulation, storage, and elimination (Thompson
1990; Garcia and Boersma 2013). This is an issue that needs to be investigated more.

Diet is one of the most important factors that explain differences in trace element
concentrations among the species. Penguins are useful bioindicators of Hg contam-
ination in their food webs (Carravieri et al. 2016). Feather Hg concentrations in
Eudyptes and Pygoscelis penguins are lower than Aptenodytes penguins, because
they feed at lower trophic levels (Carravieri et al. 2013). One study showed that the
concentrations of Zn, Al, and Mn in feathers were significantly higher in gentoo
than in chinstrap penguins, which could be explained by the different diet and
feeding habits of these species (Metcheva et al. 2006). During the Antarctic
summer, when the breeding season takes place, gentoo penguins feed inshore,
eating mainly crustaceans (68%) and fish (32%), even though foraging areas may
also be included in their diet (Croxall et al. 1997). Also chinstrap penguins feed
almost exclusively on krill, but can feed beyond the continental shelf areas (Espejo
et al. 2014). Concentration of trace elements can differ among colonies of the same
species that live far from each other owing to diet and the presence of chemicals in
waters (Jerez et al. 2011). Similarly, Yin et al. (2008) mention that the difference in
Cu levels among seabirds might be related to different food resources for the
species. The trophic level of the species which is given by diet can be determined
by means of stable isotopes of nitrogen, a method infrequently used in studies of
trace elements in penguins (Brasso and Polito 2013; Brasso et al. 2014; Carravieri
et al. 2016).

5 Summary and Conclusions

In the environment, trace elements are persistent and come from both natural
cycling in the biosphere and anthropogenic activities (Nordberg and Nordberg
2016). For this reason there is a concern about the possible negative effects these
contaminants may have on animals and marine ecosystems (Szopinska et al. 2016).
Birds are excellent indicators of the degree of pollution in the environment, because
they rapidly express the biological impacts of the contaminants that can even be
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extrapolated to humans (Ochoa-Acuna et al. 2002; Cifuentes et al. 2003; Zhang and
Ma 2011), a remarkable issue considering humans are the most sensitive species to
the toxic effects of some trace elements (Byrns and Penning 2011). The human
population will increase and also increase marine-derived protein consumption.
Most penguins include fish in their diets, such as sprats, myctophid fish, anchovies,
silversides, jack mackerel, and common hake, among others (Garcia and Boersma
2013). Many fishes are also consumed by humans, thus these birds might be used as
a bioindicator for human health and as exposure assessment. Most penguins are on
the upper side of the trophic chain and they depend on few species for food.
Consequently, the effects on a particular species might loom as a serious threat to
penguins.

Investigations of trace elements in penguins report mostly the levels of Al, As,
Cd, Cu, Hg, Mn, Pb, and Zn. The most reported metal is Pb, whereas Al is the least
reported. Other metals such as Co, Cr, Fe, or Ni have been poorly studied (Jerez
et al. 2013a; Szopinska et al. 2016). The oldest data dates back to the 1950s and it
was aimed at determining the Hg levels in feathers of King penguins (Aptenodytes
patagonicus) from Crozet Islands, South East of Indian Ocean (Carravieri et al.
2016).

There are 18 species of penguins around the world and trace elements have been
reported in 11 of them (P. papua, P. antarctica, P. adeliae, Aptenodytes forsteri,
A. patagonicus, Spheniscus magellanicus, S. humboldti, Eudyptes chrysolophus,
E. chrysocome, E. minor, and E. moseleyi). Most studies of concentrations of trace
elements in penguins have been focused on the genus Pygoscelis, mainly on gentoo
penguins, followed by Adélie penguins, and finally chinstrap penguins. Other
penguin species such as E. pachyrhynchus, E. sclateri, E. robustus, E. schlegeli,
S. demersus, S. mendiculus, and Megadyptes antipodes have not received any
attention.

The most studied penguin biological matrices are feathers and then excreta,
followed by the liver, kidneys, bones, muscles, and stomach contents. On the other
hand, studies carried out to measure trace elements in blood and internal organs
such as heart, testicles, spleen, or brains of penguins are scarce (Bargagli et al.
1998; Finger et al. 2015; Metcheva et al. 2010; Metcheva et al. 2011). The species
which display the highest concentration of most trace elements are the gentoo
penguin (33%), followed by the Adélie penguin (31%), the chinstrap penguin
(19%), the Humboldt penguin (7%), the Magellanic penguin (6%), and the Emperor
penguin (4%).

The maximum concentrations (pg/g, dw) of Al (2595) have been found in
stomach contents of gentoo penguins from King George Island, and Cd (351.8) in
the liver of Adélie penguins from Antarctic Peninsula. The highest levels of As
(7.9) and Pb (12.8) were found in excreta of Humboldt penguins from the Central
Coast of Chile. Maximum concentrations of Hg (6.6) and Cu (585.8) have been
reported in excreta of gentoo penguin and Adélie penguin, respectively, both from
the Antarctic Peninsula, whereas the maximum Zn levels (487.1) was found in
excreta of Humboldt penguins of Northern Chile. Finally, excepting excreta and
stomach contents, maximum levels of Mn (18.35) are in the bones of gentoo
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penguins from Byers Peninsula (South Shetland Islands). The large variation in
trace element concentrations detected in different biotic matrices of penguins in
Antarctica might be explained because in this continent many pristine places
coexist with locations having major human presence, a situation which rarely
occurs in others areas of the world. Additionally, several other factors can force
variation in trace element concentrations in penguin tissues such as feeding ecol-
ogy, physiological state, species, age class, molting patterns, among others.

In general, Hg, Pb, and Cd concentrations in penguins are lower than those
reported in other seabirds from the Northern Hemisphere, whereas the concentra-
tions of Al and As are otherwise. The concentrations of Cu, Mn, and Zn tend to be
within the range reported in the marine birds of the Northern Hemisphere,
suggesting that those elements are regulated in seabirds (Gibbs 1995). The highest
levels of Cu and Cd correspond to penguins that live in Antarctica, which might be
related to the high levels of these metals detected in the Antarctic krill (Nygard et al.
2001). On the other hand, it has been observed that in the Antarctic Peninsula there
is a natural enrichment of Cd, As, and Al in the trophic chains, due to the local
volcanism (Deheyn et al. 2005). Nevertheless, comparisons could be influenced by
the differences in the diet composition of each of the species (Jerez et al. 2011).

Studies on the effects of trace elements on penguins are scarce. For that reason,
the comparison of data reported in penguins with those obtained from studies
performed on birds at other locations and ecologically different to penguins was
unavoidable. Hence, any comparison to toxic thresholds of trace elements in
terrestrial birds should be taken with extreme caution, because seabirds appear to
be more resistant to toxic effect of most pollutants than are mammals or terrestrial
birds (Beyer et al. 1996). In general, the concentrations of trace elements in the
different organs of penguins are below the toxicity thresholds with negative bio-
logical consequences for seabirds. Some colonies of Humboldt penguins located in
areas with human presence on the coast of Chile might present some pathological
problems due to As, Cu, and Pb (Celis et al. 2014). Some negative effects in the
liver and kidneys of gentoo penguins from the Antarctic Peninsula could be linked
to local Pb contamination (Celis et al. 2012, Jerez et al. 2013a). Levels of Zn in
livers of some colonies of gentoo and chinstrap penguins from King George Island
(Jerez et al. 2013a) exceeded in 19% and 65% the threshold value of physiological
importance for seabirds, respectively (Honda et al. 1990). It seems to be related to
areas of greatest human activities in Antarctica, which are concentrated precisely
on King George Island (Bargagli 2008; Tin et al. 2009). Levels of Cd in livers of
some colonies of gentoo, Adélie, chinstrap, and Emperor penguins that inhabit the
Antarctic Peninsula area, and Magellanic penguins from southern Brazil, which
together represent almost 48% of the reported colonies might be associated with
physiological and ecological problems (>3 pg/g, Scheuhammer 1987). Cadmium
concentrations found in kidneys of Adélie, chinstrap, and Emperor penguin from
some locations of the Antarctic Peninsula (270.2-351.8 pg/g, Table 4), such as
Avian Island, Deception Island, and Weddell Sea, indicate that these birds have
suffered some degree of chronic exposure to this metal (Furness 1996). Further
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studies that correlate the levels of trace metals found in non-invasive samples with
biological effects on penguins are required.

Most studies of concentrations of trace elements in penguins have been carried
out on the Antarctica and subantarctic islands, thus evidencing a lack of data from
other areas where penguins live also, such as Australia, South Africa, South
America, and Galapagos Islands. It is surprising to find studies mainly in Antarc-
tica, since researchers require an adequate implementation and a firm determination
to work under extreme climatic conditions. Perhaps the urge to travel to remote and
poorly explored regions is more important than the simple desire of performing
research in more populated places with more temperate climates where the species
of threatened penguins could be more exposed to contaminants by being in areas
with major human presence.

The trophic transfer coefficient, calculated from the levels of metals available in
gentoo, chinstrap, and Adélie penguins, suggests a possible biomagnification of Cd
and Zn. Due to the fact that scientists have always believed that metals, except Hg,
are not biomagnified, this issue needs to be studied more in different environments
inhabited by penguins.

Most studies of penguins have focused on measuring the levels of exposure in
different biotic matrices. The concentration of metals in tissues and organs of
penguins may have a great toxicological importance. In humans, diseases related
to deficiency of essential trace elements are well known (Nordberg and Nordberg
2016). Further studies with biomarkers are needed in order to evaluate the actual
risks associated with the levels of these contaminants in polar environments with
low ecological diversity, which can increase diseases with consequences for the
health of penguin populations (Boersma 2008).

Little is known about the interaction of metals that might activate certain
detoxification mechanisms of the organism of penguins. It is suspected that Se
could play an important role in the detoxification processes of Hg. The study with
species in captivity could be a good alternative to evaluate the physiological
mechanisms of these species at a given concentration of metals, under a controlled
environment (Falkowska et al. 2013).

In the short term, studies of trace elements in penguins should take into account
the following aspects:

¢ Incorporation of other metals such as Co, Ni, or Cr and their possible effects in
the organisms of different species of penguins in order to perform more accurate
risk assessments.

» Further toxico-kinetics studies of trace element levels in penguins, including
other tissues and organs, are needed to better understand the overall toxicity in
seabirds.

¢ Information on metals of the following species is crucial: Eudyptes pachyrhynchus,
Eudyptes moseleyi, Eudyptes sclateri, Eudyptes robustus, Eudyptes schlegeli,
Spheniscus demersus, Spheniscus mendiculus, and Megadyptes antipodes.

¢ Correlation between the levels of metals in different biological matrices with
their effects on different species and geographic locations is required.
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» Interspecific variation of metals should be addressed more in depth, with iso-
topes of nitrogen being a good tool to understand differences among species.

¢ The implementation of monitoring programs that incorporate spatial-temporal
data is required for conducting an analysis of tendencies.

e It is crucial to implement uniform monitoring protocols to help unify the data
and make it more comparable.
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