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• PCB concentrations in Antarctic
penguin faeces follow trend
Gentoo ≥ Adelie N Chinstrap.

• Low chlorinated pattern dominated
PCBs found in faeces samples.

• PCBs and stable isotope signal (δ15N)
relation increased with species trophic
level

• Total porphyrin levels correlate well
with total PCB contents in faeces.
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Polychlorinated biphenyl (PCB) levelswere determined in the faeces of three Antarctic Peninsula penguin species
to assess viability as a non-invasive approach for sampling PCBs in Antarctic biota. These determinations were
complemented with stable isotope and porphyrins assessments, and together this methodology determined
the role of diet and metabolic disruption in penguins. Up to 60% of the collected faecal samples evidenced low
molecular weight PCBs, of which, the more volatile compounds were predominant, in agreement with previous
results. The highest PCB levels were reported in the gentoo penguin (Pygoscelis papua; 35.3 ng g−1 wet weight
average), followed by the chinstrap (Pygoscelis antarctica; 6.4 ng g−1 wet weight average) and Adélie penguins
(Pygoscelis adeliae; 12.9 ng g−1 wet weight average). Stable isotope analyses (δ15N and δ13C) demonstrated
that gentoo feeding and foraging habits differed from those of Adélie and chinstrap penguins. A strong positive
correlationwas found between PCB concentrations and δ15N, indicating the role of diet on the observed pollutant
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levels. Porphyrins metabolite levels were also directly correlated with PCB concentrations. These results suggest
that PCB levels impair the health of Antarctic penguins.

© 2016 Elsevier B.V. All rights reserved.
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Stable isotope
Porphyrin
Antarctica
1. Introduction

Persistent organic pollutants (POPs), substances of anthropogenic
origin, are resistant to photolytic, chemical, and biological degradation
and are thus extremely persistent in the environment. The high lipid
solubility of these contaminants partially explains POP bioaccumulation
in the fatty tissues of organisms (Muir et al., 1988). In a model for
explaining global POP distributions, Wania and Mackay (1996) pro-
posed a global fractionation and cold trapping hypothesis that predicts
increased POP concentrations in colder environments, such as the Arc-
tic. Supporting this, numerous studies report the occurrence of POPs
in the environmental matrices of polar environments, highlighting the
global distribution of these compounds in the air, seawater, and ice
(Galbán-Malagón et al., 2013a, 2013b, 2013c; Cabrerizo et al., 2012).

While various reports document the wide distribution of POPs in
Arctic and Antarctic biota, most are centred on the Northern hemi-
sphere. Top predators from both hemispheres accumulate these com-
pounds due to trophic transfer (Corsolini et al., 2002b, 2003, 2006).
However, there is relatively little information available regarding
contaminant distribution in Antarctic, as compared to Arctic, food
webs, and available understandings on the potential risks of Antarctic
contaminant distribution are limited.

Polychlorinated biphenyls (PCBs) and organochlorine pesticides,
two types of POPs, have been reported in various Antarctic organisms.
For example, a recent study reported increased PCB concentrations in
species at lower trophic levels, in addition to commenting on the impli-
cation of this situation on the biogeochemistry of POPs (Galbán-
Malagón et al., 2013c). Previous studies have also recorded POPs in
upper trophic levels, such as in penguins, krill, seals, and whales
(Corsolini et al., 2002a, 2002b, 2003, 2006, 2007, 2009, and 2011;
Bengtson Nash et al., 2008; Taniguchi et al., 2009). Furthermore,
Larsson et al. (1992) monitored atmosphere and marine organisms
(i.e. fish and zooplankton) from the Ross Island for two years, finding
compounds such as PCBs, dichlorodiphenyltrichloroethane (DDT),
dichlorodiphenyldichloroethylene, and lindane. Similarly, the adipose
tissue of gentoo penguins displays high hexachlorobenzene levels (i.e.
1.12 mg g−1) (Inomata et al., 1996). The faecal depositions of this spe-
cies, collected from the Ardley Peninsula of King George Island, also
present DDT, hexachlorobenzenes, and the metabolites of these two
compounds (Sun et al., 2006).

Prior analysis of the Antarctic ecosystem revealed a biomagnification
and bioaccumulation of various POPs, such as PCBs, DDT, and hexachlo-
robenzene, in food webs that included penguins (Cipro et al., 2010).
Therefore, penguins, as with other seabirds, are potentially exposed to
high POP concentrations due to high trophic positioning (Hop et al.,
2002). Furthermore, field studies suggest that penguin colonies are
secondary POP sources and play an important role in local POP redistri-
bution (Park et al., 2010; Cabrerizo et al., 2012; Huang et al., 2014).

Penguins are widely distributed across the Antarctic continent,
making them a suitable species for studying POP bioaccumulation and
trophic transfer. Of the Antarctic penguins, the Pygoscelis genus repre-
sents ≈70% of Antarctic avian biomass (Tierney et al., 2009; Biuw
et al., 2010) and has varied feeding and migration patterns (Williams,
1990; Robinson and Hindell, 1996; Clarke et al., 2003; Lynnes et al.,
2004; Trivelpiece et al., 2007). The Antarctic Peninsula is home to
three Pygoscelis species, the Adélie penguin (Pygoscelis adeliae),
chinstrap penguin (Pygoscelis antarctica), and gentoo penguin
(Pygoscelis papua) (Williams, 1990; Clarke et al., 2003; Trivelpiece et
al., 2007). Various halogenated contaminants have been detected in
ersistent organic pollutants a
), http://dx.doi.org/10.1016/j.
these Antarctic Pygoscelis penguins (Inomata et al., 1996; Sun et al.,
2006).

Stable isotopes are a useful tool for predicting and tracking anthro-
pogenic contaminant transfer through food webs (Fry, 2006;
Michener and Kaufman, 2007). In particular, the stable carbon (δ13C)
and nitrogen (δ15N) isotopes have been used to establish trophic rela-
tionships in northern polar aquatic food webs (Hobson and Welch,
1992, Hobson et al., 1995), as well as to demonstrate relationships be-
tween POP concentrations and trophic position (Kidd et al., 1998; Fisk
et al., 2001, 2003). The gradual enrichment of δ15N between prey and
consumers is relatively predictable, and enrichment values of 2.4‰ for
seabirds and 3.8‰ for an Arctic marine food web have been reported
(Hobson et al., 1995; Fisk et al., 2001). Likewise, the δ13C signature
only changes ≈1% from primary producers to primary consumers
(Hobson andWelch, 1992), thus facilitating the identification of prima-
ry productivity sources (e.g. particulate organic matter vs. ice algae).
Additionally, distinctions exist between onshore and offshore food
webs, with the later generally presenting a more depleted δ13C signa-
ture (Hobson et al., 1995, 2002).

The exposure of Antarctic organisms to POPs can also be assessed
using porphyrins, the intermediate metabolites of heme biosynthesis.
Existing evidence supports that the heme biosynthesis pathway
may be altered by environmental contaminants, including PCBs, hexa-
chlorobenzene, lindane, polychlorinated dioxins, and heavy metals,
leading to changes in porphyrin concentration through variations in ac-
cumulation or excretion (Marks, 1985; Casini et al., 2003; Jerez et al.,
2011; Celis et al., 2012; Nicol and Foster, 2003; Vanbirgelen et al.,
1996). Considering the conservation status of Antarctic biota, and of
penguins in particular, excreta samples may be a valid alternative for
assessing total porphyrins concentrations. This is duefirst to faeces sam-
pling being a non-destructive approach that could bypass traditionally
used lethal and invasive sampling procedures for assessing tissue con-
taminant levels. Additionally, faeces from a nest would reflect the food
sources for chick(s) and of mating penguins foraging in the vicinity of
breeding colonies.

The objectives of this study were to investigate the influence of tro-
phic position and foraging ground on contaminant levels using stable
isotope analyses (δ13C, δ15N) in three penguin species (gentoo,
chinstrap, andAdélie); and to determine PCB exposure through porphy-
rins levels in faeces, a possible non-invasive sampling approach.

2. Methods

2.1. Study area

All samples were obtained from two sites, (S1) near the General
Bernardo O′Higgins Chilean Military Base on the Antarctic Peninsula
and (S2) near Kopaitic Island. The first site was home to a gentoo pen-
guin colony and was located in a field adjacent to the O′Higgins Base
on the Schmidt Peninsula (63° 19′15 7″ S; 57° 53′59 2″ W). The other
site was home to chinstrap and Adélie penguin nesting colonies and
was located half a kilometre northeast of the O′Higgins Base on Kopaitic
Island (63° 18′51 6″ S; 57° 54′18 3″ W; see Supporting Information
Fig. S1 and Table S1).

2.2. Collection of samples

Samplingwas performed during the austral summer in January 2009
at penguin colonies near the O′Higgins Antarctic Base (see Supporting
nd porphyrins biomarkers in penguin faeces from Kopaitic Island and
scitotenv.2016.07.091
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Information Fig. S1). Samples were taken with the utmost care to avoid
undo stress to the penguin colonies and nesting chicks. Fresh stool sam-
ples were collected from five nests for each penguin species (see details
in Supporting Table S1). Ametal bladewas used to collect faeces as close
to the nest as possible, choosing the freshest available faeces. Samples
were individually stored in aluminium foil, labelled, placed in airtight
bags, and stored at−20 °C until processing in the laboratory. A subsam-
ple was taken for porphyrin and was separately stored in another piece
of aluminium foil at−80 °C until analysis.

2.3. Chemical extraction and clean-up

Polychlorinated biphenyls were extracted from faecal samples
following methodologies developed for other tissues (Berdié and
Grimalt, 1998, Vives et al., 2004, Montory et al., 2011). Briefly, the sam-
pleswere thawed overnight at room temperature, and≈6 gwas placed
in a 50mL glass centrifuge tubewith a Teflon lid. As a recovery standard,
5 ng of pentachloronitrobenzenewere added 30min prior to extraction.
PBCs were extracted by adding 4mL of n-hexane:acetone (1:1), placing
the samples in an ultrasound bath with water/ice for 15 min to prevent
compound evaporation during extraction, and centrifuging themixture
for 5min at 1500 rpm. The organic fractionwas placed in a 100mL flask,
and the aqueous fractionwas extracted in duplicate using the same pro-
cess, followed by organic phase pooling. Later, the extract was treated
overnight with 1 mL of concentrated H2SO4, and the mixture was then
stirred and centrifuged for 5 min at 1500 rpm. The acid phase was re-
moved, and this step was repeated until the organic phase was translu-
cent. The supernatant was transferred to a new 100 mL flask. The
obtained extract was passed through a packed column consisting of
1 g of Na2SO4 and 6 g of activated florisil, which was eluted with
90 mL of n-hexane. The collected purified extract was preconcentrated
through rotary evaporation and transferred to a 1.5 mL vial. This was
brought almost to dryness under a nitrogen stream and was completed
with isooctane to obtain a volume of 150 μL.

2.4. Chemical analysis

Prior to chemical analysis, 5 ng of PCB 142 was added to samples as
an internal standard to correct instrumental variability (Montory et al.,
2010; Montory et al., 2011). Compound identification and quantifica-
tion were performed using gas chromatography with a μ electron
capture detector (Autosystem Gas Chromatograph, 9000 series,
PerkinElmer, Inc., Waltham, MA, USA) and a PTE-5 capillary column
(60 m × 0.25 mm internal diameter and 0.25 μm film thickness). The
calibration curvewas prepared using a CLB1mixture containing the tar-
get compounds (see below) obtained from theNational Research Coun-
cil of Canada, which totaled to 51 PCB congeners. A PTE-5 capillary
column (60m×0.25mm internal diameter and 0.25 μm film thickness)
with heliumas a carrier gas, an automatic injectionmode (10 μL), am in-
jector temperature of 240 °C, and a detector temperature of 360 °C was
used. The target PCBs were classified according to the International
Union of Pure and Applied Chemistry by the number and position of
chlorine substitutions: Tri, 18, 31; Tetra, 44, 52, 77; Penta, 87, 101,
103, 105, 114, 118, 121; Hexa, 128, 129, 137, 138, 141, 151, 153, 154,
179, 156, 159; Hepta, 170, 171, 180, 182, 183, 185, 187, 189, 191;
Octa, 195, 203, 180,205; and Nona, 207.

2.5. Quality assurance and control

All glass materials used during extraction were cleaned prior to use
by rinsing in triplicatewith acetone, followedby an 8 h combustion pro-
cess at 450 °C. All metal materials were cleaned with deionized water
followed by rinsing in triplicate with acetone. Then, all cleaned mate-
rials werewrapped in aluminium foil until use in sampling or laboratory
processing. One blank sample was used for every five samples. Blank
concentrations ranged from 9 to 33 pg g−1 for the detected ΣPCBs.
Please cite this article as: Rudolph, I., et al., Persistent organic pollutants a
Antarctic Peninsula, Sci Total Environ (2016), http://dx.doi.org/10.1016/j.
Concentrations reported in the blanks were subtracted from each
sample array. Average values for PCBs ranged from 4.4–10.2% for each
PCB. Limits of detection and quantification were calculated from blank
samples as the mean plus 3-fold and plus 10-fold the standard devia-
tion, respectively. Obtained limits of detection and quantification
ranged from 9.22 to 13.5 pg g−1 and from 11.13 to 13.5 pg g−1, respec-
tively, for individual PCBs. Extraction recoveries were evaluated as a
percentage of pentachloronitrobenzene; the obtained values ranged be-
tween 56 and 84%, indicating that samples were corrected for recovery.
In parallel, blank samples were run with n-hexane and 5 ng of
pentachloronitrobenzene following the same extraction process, with
a result of 100% extraction. More information about quality assurance
and quality control protocols can be found in Berdié and Grimalt
(1998); Vives et al. (2004), and Montory et al. (2010, 2011).

2.6. Porphyrins extraction and fluorimetric determination

Porphyrins extractions were conducted following the methodology
of Lockwood et al. (1985). Briefly, a subsample of homogenized lyophi-
lized sample (0.1 g) was placed in a graduated centrifuge tube with
1 mL of 5 N HCl and vortex-mixed. Diethyl ether (3 mL) was added;
the extract was thoroughly mixed to obtain an emulsion; 3 mL of
water was added, and the extract was further mixed. The mixture was
then centrifuged for 10 min at 200 rpm. The lower phase containing
porphyrins metabolites was used for fluorimetric determinations.
Porphyrins were quantitatively established following Grandchamp
et al. (1980). Briefly, this procedure is based on the different excita-
tion/emission wavelengths for each porphyrin, where uroporphyrin:
405–595 nm; coproporphyrin: 400–595 nm; and protoporphyrin:
410–605 nm. Aqueous samples were placed in a micro-cuvette and
measured using a Perkin Elmer Model LS50 spectrophotofluorometer.
Porphyrin standards (i.e. uroporphyrin III octamethyl ester,
coproporphyrin III dihydrochloride, and protoporphyrin IX dimethyl
ester) were obtained from Porphyrin Products Inc. (Logan, UT, USA)
and used to construct calibration curves for each porphyrin in the
mixture.

2.7. Stable isotopes analyses

Penguin faeces samples for each species were analysed for stable ni-
trogen (δ15N) and carbon (δ13C) isotopes at the Environmental Isotope
Laboratory, University of Waterloo, Canada. Dried samples were
ground, and the aliquots (0.25–0.30 mg) were weighed in tin cups
and analysed using a Delta Plus Continuous Flow Stable Isotope Ratio
Mass Spectrometer (ThermoFinnigan, Bremen, Germany) coupled to a
Carlo Erba Elemental Analyzer (CHNS-O EA1108, Milan, Italy).

2.8. Statistical analysis

To assess differences in concentrations between penguin species, a
non-parametric Kruskal-Wallis test followed by a post-hoc Tukey test
was performed. Linear regression analyseswere used to determine rela-
tionships of porphyrins with PCB and stable isotope concentrations. All
statistical analyses were performed using the STATA v11.1 statistical
package (Stata Corp Ltd., College Station, TX, USA).

3. Results

3.1. PCBs occurrence

Chinstrap penguins showed the lowest PCB concentrations (p b 0.05,
4.7 ± 1.2 ng g−1 wet weight [w.w.]), as compared to Adélie (12.93 ±
2.5 ng g−1 w.w.) and gentoo penguins (35.52 ± 38.45 ng g−1 w.w.;
see concentration summaries in Supporting Information Table S2)·Gen-
too penguins also displayed the greatest variability of PCBs, a result
obtained due to concentrations in one sample (5.15 ng g−1 w.w.). The
nd porphyrins biomarkers in penguin faeces from Kopaitic Island and
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Fig. 1. PCB concentration profiles found in penguin faeces (Mean ± Standard Error) from
(A) Adélie, (B) chinstrap, and (C) gentoo penguins.
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congener pattern in all three species was highly similar (Fig. 1), with a
predominance of lowmolecular weight congeners. For example, conge-
ners with ≤5 Cl accounted for 60% of the total quantified PCBs across
species. The detailed concentrations for each PCB congener are provided
in Supporting Information Table S2.

3.2. Porphyrins concentrations

Porphyrins concentrations were significantly different between the
assessed penguin species (p ≤ 0.05). Uro, copro, proto, and total porphy-
rinswere consistently higher in the Adélie and gentoo penguin colonies
as compared to the chinstrap penguin colony (see Supporting Informa-
tion Table S2). Protoporphyrins accounted for the majority of porphy-
rins (55–66%, p b 0.05), followed by less abundant coproporphyrin
and uroporphyrin concentrations (26–31% and 11–15%, respectively).

3.3. Stable isotopes

Stable isotope analyses of δ15N indicated average differences of N9‰
between gentoo and chinstrap penguins, of ≈8‰ between gentoo and
Adélie penguins, and of b2‰ between Adélie and chinstrap penguins.
From this, a significant increase in the δ15N isotopic signal was obtained
in gentoo penguins (p b 0.05). Notably, the wide range of different tro-
phic levels consumed by each penguin species were reflected by the
δ15N signatures, with δ15N signatures of 19–29, 10–18, and 10–19 re-
spectively obtained for the gentoo, Adélie, and chinstrap penguin colo-
nies (Fig. 2). Supporting this finding, the isotopic signal of δ13C was
very narrow (b2‰) between Adélie and chinstrap penguins, suggesting
similar foraging habits (Fig. 2).

4. Discussion

Most of the maker PCBs established by the International Council for
the Exploration of the Sea (i.e. PCBs 52, 101, 118, 138, 153, and 180)
were quantified in all studied penguin populations and were present
in almost all analysed samples. The only exception was PCB-138,
which was only quantified in gentoo penguin faeces. Gentoo penguins
also had the highest number of PCB congeners as well as the highest
total PCB concentrations per sampled individual, which was roughly
3- to 5-fold higher than in other species.

Previously reported ∑PCB levels in Adélie (9.8 ± 3.8 ng g-1 w.w.,
ranging from 4.9 to 17 ng g−1 w.w.) and chinstrap penguins (4.5 ±
2.4 ng g−1 w.w., ranging from 1.7 to 9.5 ng g−1 w.w.) were similar to
the currently presented values (Corsolini et al., 2007). Once again, the
only exception was in gentoo penguins, where the∑PCB levels of the
present study were up to 10-fold higher than values (3.5 ± 1.6 ng g−1

w.w.) reported by Corsolini et al. (2007). However, it isworth highlight-
ing that similar profiles were found.

Notably, the currently obtained profiles concur with previous re-
ports on the influence of the biological pump in surface waters and on
the implications of this pump in PCB biomagnification through the
foodweb. In particular, PCB cycling studies in the Antarctic Ocean report
that atmospheric PCBs reach surface waters via the biological pump
(Galbán-Malagón et al., 2013a and b). This pump efficiently exports
highly hydrophobic PCBs to deeper waters, and therefore, the transfer
of these PCBs to higher trophic levels is likely diminished, as found in
other areas (Nizzetto et al., 2012). Furthermore, the presently obtained
patterns are in line with those found in Antarctic benthic and pelagic
species (Corsolini et al., 2003; Goutte et al., 2013).

In turn, a positive relationship was observed between total PCB
levels and the respective δ15N signals (r2 = 0.43, p b 0.05), with the
highest total PCB concentrations in gentoo penguins, followed by Adélie
and chinstrap penguins (Fig. 3A, Supporting Information Table S2).
When analysing data using the number of Cl atom substitutions, a pos-
itive relationship with δ15N was found for all PCBs (p b 0.05) except
Nona-CB (Supporting Information Fig. S2). This finding could be related
Please cite this article as: Rudolph, I., et al., Persistent organic pollutants a
Antarctic Peninsula, Sci Total Environ (2016), http://dx.doi.org/10.1016/j.
to the longer equilibration times required by the more hydrophobic
PCBs, which have lower assimilation efficiencies, as demonstrated
in other wildlife species (Moser and MacLachlan, 2001, Kelly et al.,
2004).
nd porphyrins biomarkers in penguin faeces from Kopaitic Island and
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Fig. 2. Stable isotopes (δ13C‰/δ15N‰) in gentoo (G), Adélie (A), and chinstrap (C)
penguins faeces.
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The results for faecal PCB contents and stable isotopes displayed dif-
ferences attributable to food web position (Fig. 2) and varied carbon
sources. For example, the gentoo penguin faeces samplewith the lowest
Fig. 3. (A) Relationship between the total PCB concentrations and δ15N‰ in gentoo (G),
Adélie (A), and chinstrap (C) faeces. (B) Correlation between total porphyrins and PCBs
in gentoo (G), Adélie (A), and chinstrap (C) penguin faeces.

Please cite this article as: Rudolph, I., et al., Persistent organic pollutants a
Antarctic Peninsula, Sci Total Environ (2016), http://dx.doi.org/10.1016/j.
PCBs concentration (i.e. 5.15 ng g−1 w.w.) exhibited a similar trophic
position to that of Adélie and chinstrap penguins. Penguin diet studies
have established that the Adélie penguin diet is primarily krill-based
(Lynnes et al., 2004), although occasionally fish and zooplankton may
be incorporated (Tierney et al., 2009). In turn, the chinstrap penguin
diet is primarily krill-based (Lynnes et al., 2004). The Adélie and
chinstrap penguins chiefly forage within the upper water column,
which concurswith the presently obtainedfindings for δ13C isotopic sig-
nals. In contrast, gentoo penguins have a more varied diet that largely
consists of fish and fewer krill and squid. Therefore, gentoo penguins
forage at higher trophic levels from deeper waters, which is in line
with the obtained findings for the δ15N and δ13C isotopic signals
(Robinson and Hindell, 1996).

Finally, porphyrins levels were very high and, despite interspecific
differences, the presently recorded faecal levels were various orders of
magnitude higher than those in other seabirds along the central Chilean
coast (Casini et al., 2001). There is evidence that halogenated organic
compounds, such as dioxins and PCBs, cause changes in progressive
uroporphyrin accumulation (Miranda et al., 1992). Furthermore, herbi-
cide contamination promotes protoporphyrin accumulation (Leonzio et
al., 1995), while heptachlor, lindane, arsenic, and mercury exposure re-
sults in coproporphyrin accumulation (Taira and San Martín De Viale,
1980; Woods et al., 1991, Bowers et al., 1992; Ng et al., 2002). Conse-
quently, the present results suggest that penguins are, in fact, exposed
to POPs. A strong positive relationship was found (r2 = 0.73, p b 0.05;
Fig. 3B) between total PCB concentrations and total porphyrins concen-
trations. This relationship was also significant when correlations were
performed for each penguin species (p b 0.05). The higher PCB levels
in Adélie and gentoo penguins may be due to a higher relative trophic
position than chinstrap penguins (Lynnes et al., 2004), and the carbon
source (i.e. δ13C signature) suggests an offshore diet related to these
contaminants, as similarly reported in other marine polar/subpolar sys-
tems (Hobson et al., 1995, 2002).

5. Conclusions

Penguin faeces sampling is a useful, non-invasive strategy for study-
ing penguin exposure to POPs. The present results support the align-
ment of PCB patterns with the biological pump as a biogeochemical
driver for POPs. Due to porphyrins production, PCBs could be linked to
metabolic impairment in Antarctic penguins. This concurs with studies
conducted on penguin blood that indicate a correlation between hae-
matological parameters and the sum of PCBs in chinstrap penguins
from the same area as that currently assessed (Jara-Carrasco et al.,
2015). Taken together, these findings strongly indicate that penguins
from pristine environments, such as Antarctica, are subjected to
chemical exposure stress. However, better comprehensions of the
toxicokinetic pathways for these pollutants are needed to propose
clearer conclusions regarding potential impacts on penguin population
health. Furthermore, additional studies are needed to assess the effects
of exposure to other complex chemical mixtures, not only POPs.

Abbreviations

DDT dichlorodiphenyltrichloroethane
PCB polychlorinated biphenyl
POPs persistent organic pollutants
w.w. wet weight
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