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Abstract—In the context of bio-acoustic sciences, call detection
is a critical task for understanding the behaviour of marine mam-
mals such as the blue whale species (Balaeonoptera musculus)
considered in this work. In this paper we present an approach
to blue whale call detection from an unsupervised perspective.
To achieve this, we use temporal and spectral features of audio
acquired with a marine autonomous recording unit. The features
considered are 46-dimensional and include the mel frequency
ceptrum coefficients, chromagrams, and other scalar quantities;
these features were then grouped via two different clustering
algorithms. Our findings confirm the suitability of the proposed
approach for isolating blue whale calls from other environmental
sounds (as validated by a bio-acoustic specialist). This is a clear
contribution for the annotation of blue whales calls, where the
search for calls can now be performed by analysing the clusters
identified instead of the entire recordings, thus saving time and
effort for practitioners in bio-acoustics.

Keywords—Bioacoustic, blue whale, mixture of Gaussians,
clustering, signal processing, MFCC, ceptrum.

I. INTRODUCTION

A. Basics of blue whale’s calls

In recent years, passive acoustic monitoring (PAM) has
been considered within the study of cetaceans [1], [2] though
recording and analysing their acoustic activity; this has been
used as a tool for assessing the effect of man-made sounds on
such group of mammals [3], [4]. PAM has become a popular
resource within bio-acoustics as a detector for cetaceans [5],
[6], this is because they are capable of operating over extended
periods of time, at day or night, in any weather condition,
and in any geographical area. PAM has therefore allowed for
extensive monitoring far beyond what has been achieved with
visual methods [5], [6].

Within cetaceans, blue whales (Balaenoptera musculus)
are an endangered species and therefore understanding their
behaviour patterns is crucial to design conservations policies;
we approach this through analysing their calls. Blue whales
calls are mainly characterised for being tonal signals, having
a frequency around 10 - 100 Hz, although some vocalisations
can reach 400 Hz [7], [8]. Since (i) these frequency ranges
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are similar to those of the buoy signal and sound of ship’s
motor, and (ii) the whale call is in the low-frequency part
of the spectrum, a common issue within acoustic detectors is
that whale calls are masked by external sounds due to their
proximity on the spectral domain. This makes the detection
challenging specially if only the spectrogram is considered.

Whales in general produce audio signals that can be de-
tected dozens of kilometres away using a single hydrophone
[9], however, when the whale is moving farther away from
the receptor the signal intensity decreases, thus making the
detection challenging. At the same time, if there is a ship close
to the measurement point, the sound from the ship will block
the low-intensity call [1], [10]. In this sense, the construction
of an automatic detector that is able to process a large amount
recordings is a direct contribution to whale call detection to
depart from manual (human) methods and thus represent an
improvement in speed and precision.

Furthermore, it should be noted that the efficiency of
acoustic detection schemes varies for different species. This
is due to the difference among fundamental frequency, signal
intensity, travel direction of the sound and animal behaviour
[1].

B. Scope of this study

Recall that the ultimate goal of blue whale call detection is
to characterise and understand whales behaviour. We address
the call detection problem by analysing submarine audio
recordings, and then detecting different types of submarine
sounds via clustering; our hypothesis is that the whales calls
(having frequency between 10 - 525 Hz) will be isolated
into one or more clusters. Our case study considers record-
ings of the submarine environment obtained with a marine
autonomous recording unit (MARU) that was moored to the
seafloor (200 metres) near the Guafo island (S43◦31.889’,
W074◦26.488’) in the south of Chile. Acoustic recordings
were acquired between the end of summer and autumn 2012,
whereas the data used in this work consisted of 6.5 hours
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of recordings containing blue whale calls and environmental
sound as ship engines.

Our setting is an audio segmentation one [11]–[13]. In
this context, we propose a unsuspervised approach to whale’s
call detection, where for each section of audio we calculate
multiple features of both temporal and spectral nature. Our
set of features includes but is not restricted to mel frequency
ceptral coefficients (MFCC) [14] and Chroma features [15].
Then we use various clustering methods to segment the feature
space in groups, using Gaussian mixture model (GMM) [16]
and Density-Based spacial clustering of applications with
noise (DBSCAN) [17]. Validation of the algorithm was then
made by a bio-acoustic specialist. An example of typical blue
whale’s call spectrogram, found in the recordings and validated
by a bio-acoustic specialist is shown in Fig. 1, where three
main parts composing the vocalisation can be identified; notice
that for each part the low fundamental frequency is clearly
identified and harmonics are also visible.
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Fig. 1. An example of spectrogram of blue whale’s call. Observe the three
units and the low-frequency fundamental component with harmonics.

II. PROPOSED METHODOLOGY

Our approach is performed in three stages: First, the
available audio recordings are preprocessed and normalised,
then the audio signals are divided into small segments of
approximately 1 [s] to compute a total of 46 features on those
segments. Secondly, clustering is performed on the features to
group the audio according their common spectral properties.
Thirdly, the result of the clustering is presented using t-SNE,
a method for visualising high-dimensional elements. Our aim
is that all calls are isolated into one or more clusters, whereas
external sounds are represented in the remaining clusters.

A. Time-frequency features considered

For each normalised audio segment, the features extracted
and their dimension are shown in Table I, where the top
14 rows are usual scalar-valued features in signal processing
analysis both in the time and frequency domains.
Mel frequency ceptral coefficients (MFCC): Since its in-
troduction in [14], MFCC has been the de facto method
for obtaining features for speech processing. The ceptrum
is defined as the inverse Fourier transform of the logarithm

TABLE I
FEATURES CONSIDERED WITH CORRESPONDING DIMENSIONS.

Feature dim Feature dim
Zero crossing rate 1 Max frequency 1

Energy entropy 1 Energy 1
Skewness 1 Kurtosis 1

Min 1 Max 1
Range 1 Spectral Centroid 1

Spectral spread 1 Spectral entropy 1
Spectral flux 1 Spectral roll off 1

MFCC 20 Chroma 12

of the power spectral density of a signal, which, due to the
Wiener-Khinchin theorem [18], [19], can be interpreted as a
log-compressed autocorrelation sequence of the signal:

Power ceptrum = |F−1{log|X̂(ω)|2}| (1)

where F−1 is the inverse discrete Fourier transform and X̂(ω)
is the estimate of the power spectral density. MFCC is an
extension of the ceptrum concept that takes into account
the energy of Mel-spaced filter banks [20], thus providing
information of the signal according to the Mel scale, where
different frequency zones have filter banks of different widths
to achieve the desired resolution. This is specially useful when
describing whale calls, as the calls frequency ranges from 10
to 525 Hz and variable resolution is required.
Projected spectra: Chroma features [15] are an alternative
representation of the spectrum of a signal in which the entire
spectrum is projected into twelve bins representing the twelve
semitones (or chroma) of the musical octave in western music.
The chromagram is obtained from the power spectral density
and is a reduced-dimensionality representation of the spectrum
which will be useful to discriminate among multiple audio
sources.

B. Unsupervised learning: Clustering

Segmentation of audio segments (represented by their fea-
ture vectors) will be achieved using two clustering methods:
DBSCAN [17] and Gaussian mixture model [16]. The ratio-
nale behind DBSCAN is that clusters are dense groups of
elements, meaning that if a particular element belongs to a
cluster, it should be close to a number of other elements in
that cluster. The method receives two parameters, minpoints
and a radius ε, where an element is in a cluster if there is
at least minpoints other elements in a radius ε around it. It
is worth noting that DBSCAN does not need a predefined
number of clusters and it is a nonparametric method to group
points, where isolated points are labelled together in cluster 0
(outliers).

A Gaussian mixture model (GMM) is a latent variable
model that assumes all data points come from a mixture of
finite number of multivariate Gaussians, each one with its
own mean vector and covariance matrix. The latent variable
is the probability of a point to have been generated by
a given Gaussian component. GMM can be understood as
an generalisation of k-means [21], since k-means considers



isotropic Gaussians only whereas and GMM incorporates the
covariance structure of the data to the clustering.

C. Visualisation

Given that the feature space is 46-dimensional, once the
clustering stage is performed a dimensionality reduction
method will be used to visualise the data and provide intuition
into the found clusters. In this work, we consider the t-
distributed stochastic neighbour embedding method (t-SNE)
[22], a non-linear dimensionality-reduction algorithm that con-
structs a probability distribution over pairs of high-dimensional
objects and then projects them into a lower-dimensional space,
where similar points will have high probability of being near.
The low-dimensional space will be 2- or 3-dimensional and
can therefore be plotted.

III. CASE STUDY: Balaeonoptera Musculus

In this study, data were obtained from hydrophones placed
in nautical buoys. Having a hydrophone in a fixed place,
instead of having it fixed to the whale such as a D-Tag [23],
has a key advantage: The passive movement of the water does
not disturb as much as having the instrument attached to a
whale, where sudden movements and water splashes saturates
the hydrophone.

A. Preprocessing

For this study, we used 3 files of marine audio recordings:
One containing blue whale’s calls, one containing background
sounds, and containing one far ship engine sounds. Each
recording was 900-second long (45 minutes in total), resam-
pled at 2 kHz and converted to mono (by averaging both
channels). Then, the recordings were standardised individually,
then, the entire set was normalised again to obtain unit
variance. Finally, the available dataset was divided into shorter,
overlapped frames of approximately 1 [s] (2048 data points),
with 30% overlapping, to calculate the 46 features mentioned
in Section II-A. We emphasise that although we know where
the whale calls are in the data, our training approach is fully
unsupervised, and the labels are only used to validate the
segmentation obtained.

B. Training

Clustering was applied in the feature space, where for
DBSCAN the heuristics chosen for hyperparameters is that
minpoints was set equal dimension of feature space minus two
(i.e., 44), and the radius (ε) equal to the mean distance to the
minpoints neighbour. For GMM, an unconstranied covariance
matrix was used to produce a general model, and the number
of components was set by inspection from 3 to 8 components,
where the methods performed consistently.

After clustering, the segments of audio corresponding to
points in the same cluster were grouped in the same audio file
maintaining their order in time, thus facilitating the validation
performed by the bio-acoustic specialist. Recall that t-SNE
was used to show the prototypes (centres) found via clustering.

C. Experimental results

DBSCAN, using the aforementioned heuristic with
minpoints = 44 and ε = 2.716, yielded the three clusters shown
in Fig. 2. The outliers found, marked in green, are spread
across the low dimensionality projection, it is precisely in this
cluster where all the calls were grouped together with some
ship engines passing close to the hydrophone. The reason the
calls were considered as outliers is that the distance between
elements that were not whale calls is, in average, smaller
than the distances between whale’s calls, as calls are formed
by different sound structures—in simpler terms, calls are too
distant to one another to form clusters under DBSCAN. The
segmentation in time made by DBSCAN, shown in Fig. 3,
reveals that calls were grouped with non-call audio, since we
know that there are no calls after the first third of the data.
The use of DBSCAN found some of the calls but not because
of their harmonic structure but for being an outlier in the
frequency domain, however, DBSCAN gives an intuition to
set the number of clusters for GMM: at least three, since the
outliers can still have undiscovered structure. An example of
audio labelled in the same cluster as the calls is shown in Fig.
4 where it can be seen other elements besides the whale calls.
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Fig. 2. t-SNE projection of feature samples clustered by DBSCAN (3
clusters). The cluster 0 (outliers) contains both the whale calls and a some
ship engine sounds, cluster 1 contains submarine background noise and cluster
2 the rest of the ship sounds.
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Fig. 3. Time segmentation using labels obtained from DBSCAN. Colour code
follows Fig. 2
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Fig. 4. 120 [s] spectrogram for cluster 0 assigned by DBSCAN. We can see
calls up to 1:00 and non-calls from 1:00.

GMM was first trained using three components (GMM-3)
as there are (theoretically) three sound sources: background
noise, ship’s motor and blue whale’s calls—recall that this
was confirmed by DBSCAN. The hard assignment of GMM
is shown in Fig. 5, as in similar way with DBSCAN, the
two large groups seen in the t-SNE projection are grouped
together, the calls are identified in the blue cluster together
with ship motor sounds. Notice that as GMM forces the size
of the clusters so as to fit all the data into the given number
of clusters, thus grouping points that may not be sufficiently
similar due to a poor choice of the number of clusters. The
time segmentation for GMM is shown in Fig. 6 where most of
the whale’s call is the same cluster as the large section marked
in blue. Both for DBSCAN and GMM with three components,
Table II shows the number of elements in each cluster, the total
of data points and duration per cluster. Note that, as opposed
to DBSCAN, GMM groups most of the observations in two
clusters. An example of audio assigned to cluster 2 is shown
in Fig. 7, where both calls and non-calls can be identified.

TABLE II
AUDIO SEGMENTATION FOUND BY THE CLUSTERING ALGORITHMS WITH 3

CLUSTERS.

Cluster id 0 1 2

DBSCAN
samples 675 1 934 1 158

audio samples 1 036 155 2 793 562 1 706 769
duration [s] 518.08 1 396.78 853.38

GMM
samples 1.774 1.927 66

audio samples 2 564 897 2 778 611 100 728
duration [s] 1 282.45 1 389.30 50.36
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Fig. 5. t-SNE projection of feature space of partition found by GMM with 3
components. The cluster 0 is submarine background, cluster 1 contains calls
and ship sounds, and cluster 2 contains a last part of the calls.
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Fig. 6. Time segmentation using labels obtained with GMM with 3 compo-
nents.Colour code follows Fig. 5
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Fig. 7. 120 [s] spectrogram for cluster 2 assigned by GMM with three
components.

Finally, GMM was implemented with eight components
(GMM-8) and the result is shown in Fig. 8, where the outliers
and the largest cluster of GMM-3 were split in different
clusters. The time segmentation shown in Fig. 9 reveals that
most of the blue whale’s calls are in individual clusters. The
number of elements in each cluster in the GMM-8, as well
as the total of the data points and duration is shown in Table
III, where the blue whale calls are in clusters 2, 3, 4, 6 and
7, each cluster with a different call structure. Where the tree
main structures of a call are in clusters 3, 4 and 7.
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Fig. 8. t-SNE projection of feature space by partition found by GMM with
8 components.
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Fig. 9. Time segmentation using labels obtained with GMM with 8 compo-
nents.Colour code follows Fig. 8



TABLE III
AUDIO SEGMENTATION FOUND BY THE GMM WITH 8 COMPONENTS.

cluster id samples audio samples duration [s]
0 626 1 028 053 514.02
1 1 880 2 710 030 1355.01
2 18 31 329 15.66
3 47 77 806 38.90
4 264 396 147 198.07
5 670 1 087 415 543.70
6 14 21 907 10.95
7 248 386 134 193.06

It is also worth noting that the main components of blue
whale calls were associated to individual clusters consisting
only in that part of the call, whereas background noise,
ship’s motors and other unknown sources were isolated in the
remaining clusters. Advised by the bio-acoustic specialist, we
identified the clusters that contained "parts of calls". Then, we
post processed the outcome of GMM-8 by combining all the
clusters with parts of calls in meta-cluster 1 and the rest of
the samples in meta-cluster 0. An example of two minutes
of meta-cluster 1 (containing only calls) is shown in Fig.
10, where multiple calls are stacked, but without the silence
between the first and second part shown in Fig. 1. Fig. 11
shows meta-cluster 0, i.e., the combination of clusters that are
not calls, where it can be seen the transition from background
noise to ships engine sound at second 45.
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Fig. 10. 120 [s] spectrogram for meta-cluster 1 assigned by GMM with eight
components: this meta-cluster contains all the original clusters containing
calls.
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Fig. 11. 120 [s] spectrogram for meta-cluster 0 assigned: this meta-cluster
contains all the original clusters which are not calls.

IV. DISCUSSION AND FURTHER STEPS

Our experimental results have shown that submarine audio
recordings can be separated to find blue whale calls using
(i) multiple time-frequency features and (ii) clustering in an
unsupervised manner, where posterior analysis showed that
MFCC and Chroma were the most influential of the features.
Out of the clustering methods used, GMM with 8 components
yielded the best results, being able to separate the audio
in the true original sources and find one cluster for each

one of the three main component of a blue whale call. The
proposed framework represents a practical contribution for
bio-acoustics, where annotation of whale calls is simplified
due to the clustering performed: The bio-acoustic specialist
can now focus on each cluster prototype and does not need to
analyse the entire recording.

Future work includes probabilistic approaches to spectrum
modelling and recovery such as those in [24]–[26], and also
filterbanks specially designed for the range of frequency of
interest, as MFCC uses Mel scaled filterbanks and Chroma
is based on the western musical scale. Within the choice of
features, the following question also arises: Is it possible to
avoid the design of time-frequency features and rely on fully-
automatic feature discovery? The answer to this might be the
use of autoencoder neural networks [27], where a compressed
representation of the signal (or its spectrum) can be learnt and
then used to perform the clustering stage. Finally, using other
methods of clustering, such as the Bayesian Gaussian mixture
or the Dirichlet processes [16], may allow us to infer the
posterior distribution over the clustering parameters, including
the number of clusters.
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